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Objective: The objective of this study was to estimate trust
from conversations using both lexical and acoustic data.

Background: As NASA moves to long-duration space ex-
ploration operations, the increasing need for cooperation between
humans and virtual agents requires real-time trust estimation by
virtual agents. Measuring trust through conversation is a novel and
unintrusive approach.

Method: A 2 (reliability) × 2 (cycles) × 3 (events) within-
subject study with habitat systemmaintenance was designed to elicit
various levels of trust in a conversational agent. Participants had
trust-related conversations with the conversational agent at the end
of each decision-making task. To estimate trust, subjective trust
ratings were predicted using machine learning models trained on
three types of conversational features (i.e., lexical, acoustic, and
combined). After training, model explanation was performed using
variable importance and partial dependence plots.

Results: Results showed that a random forest algorithm,
trained using the combined lexical and acoustic features, predicted
trust in the conversational agent most accurately ðR2adj ¼ 0:71Þ. The
most important predictors were a combination of lexical and
acoustic cues: average sentiment considering valence shifters, the
mean of formants, and Mel-frequency cepstral coefficients (MFCC).
These conversational features were identified as partial mediators
predicting people’s trust.

Conclusion: Precise trust estimation from conversation re-
quires lexical cues and acoustic cues.

Application: These results showed the possibility of using
conversational data to measure trust, and potentially other dynamic
mental states, unobtrusively and dynamically.

Keywords: Trusting automation, trust measurement, machine
learning, model visualization and explainability, human-AI-robot
teaming

INTRODUCTION

As the National Aeronautics and Space Ad-
ministration (NASA) moves to long-duration space
missions, longer time delays in communication
between crews and ground control will requiremore
cooperation between the humans and the onboard
virtual agent (Chiou and Lee, 2016, 2021; Johnson
et al., 2014; Trafton et al., 2006). In this human-
autonomy team (HAT), trust, defined as “the attitude
that an agent will help achieve an individual’s goals
in a situation characterized by uncertainty and
vulnerability” (Lee and See, 2004, p. 54), plays an
essential role and affects various team processes
including information sharing, decision-making,
and ultimately team success (Endsley et al., 2021;
Krausman et al., 2022). To better manage the HAT,
it is important to first measure trust unobtrusively
and dynamically.

Three main types of measurements have been
developed to capture trust: subjective, behav-
ioral, and physiological (Kohn et al., 2021). For
subjective trust measurements, people self-
report their feeling and attitudes by answering
survey items. While self-reported trust is most
frequently used and often treated as the gold
standard, it is unable to satisfy the need for
unobtrusively monitoring trust dynamics, es-
pecially in time-pressured, risky situations, such
as space missions or autonomous driving (Li
et al., 2020; Yang et al., 2021). Behavioral
measurements can unobtrusively estimate trust
through interactions with the automated system,
which can be passive (reliance) or active
(compliance). Although behavioral measure-
ments allow a minimal disruption and a higher
sampling rate than self-report, the metrics are
often task-specific and hard to generalize.
Physiological measurements capture biological
responses ranging from heart rate changes to eye
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gaze tracking to neural activation. They present
a great opportunity for real-time trust estimation
(Azevedo-Sa et al., 2021). However, collecting
high-quality physiological data (e.g., electro-
encephalogram and skin conductance responses)
often requires specialized and intrusive hard-
ware (e.g., electrodes on the scalp or hands),
which is challenging to implement in real-world
applications. One rich, but often neglected,
source of data for measuring is team commu-
nication. With the increasing level of in-
terdependency in HAT, there is an increase in
information exchange between human and AI
teammate, which can reflect team cognition and
processes (Cooke et al., 2013). In conversations,
people may change what they say and how they
say it based on their trust of their AI teammate.
According to previous theoretical research by
Lee and See, trust is mainly an affective process
(Lee and See, 2004). However, current meas-
urements, such as subjective ratings, do not
adequately reflect this affective aspect of trust,
which is a major limitation when compared to
conversational measurements. In this paper, we
demonstrated that measuring trust from con-
versations provides a promising yet under-
explored approach. We took the first step in
this direction by predicting and validating trust
based on structured conversations with a con-
versational agent that supported a complex de-
cision task. Additionally, we identified the
important conversational features for trust pre-
diction. Our findings provided theoretical im-
plications for developing conversational
measurement of trust and adaptive conversa-
tional strategy of a trustworthy AI teammate.

BACKGROUND

Measuring Trust via Communication

Although communication plays a vital role in
driving HAT success, measuring trust via
communication is still a new approach. Com-
munication can manifest conscious and sub-
conscious mental states. Trust, which reflects
both analytic and affective processes, can be
analyzed and measured via communication (Lee
and See, 2004). Prior literature on HAT usually
uses communication patterns such as

communication rates and flows to predict trust
(Bromiley and Cummings, 1995). Limited re-
search has been focusing on communication
content for trust measurement. Although the
most explicit way of expressing and sensing
trust is via words that directly pertain to trust
(e.g., I trust you), it is unnatural and rare for
people to express a direct attitude in a perfor-
mance-based task. Thus, we should elicit and
infer people’s trust via processing and analyzing
signals exhibited by individuals in conversations
(Vinciarelli et al., 2009). To do so, we need to
first elicit utterances by designing trust-relevant
situations with appropriate conversational
prompts. Our prior work developed a trust
lexicon and a general framework on how to
design appropriate conversational prompts
(Alsaid et al., 2022; Li et al., 2020). Once we
elicit trust-relevant conversations, we can pro-
cess and analyze the conversational cues to
estimate people’s trust. According to the well-
known phrase, “It’s not only what you say, but
also how you say it.”, both the words and how
they are said should convey trust. Therefore, in
this paper, we consider not only lexical cues
(e.g., words used), but also acoustic cues (e.g.,
pitch, formants) (Elkins and Derrick, 2013;
Johnson et al., 2014).

Lexical Indicators of Trust

Lexical features in the conversation contain
rich information including the length of the
utterances (e.g., word count), word choices, and
sentiment (Spitzley et al., 2022). The most
frequent and simple measure is word count.
Prior literature has shown that there is a positive
correlation between word count and perceived
trustworthiness in online dating profiles and
lending load requests (Larrimore et al., 2011;
Toma and Hancock, 2012). Based on the un-
certainty reduction theory, the more information
is provided, the less uncertainty, and the higher
the perceived trustworthiness (Beller et al.,
2013; Kramer, 1999). Yet, little is known for
whether this correlation holds true with the
lexical features of trustor’s communication (i.e.,
higher trust, less words). For the sentiment in the
conversations, prior research has shown that
verbal positivity is positively correlated with
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perceived trustworthiness of organizational
leaders (Norman et al., 2010). Additionally,
people also found the positive association be-
tween positive sentiment in trustors’ word re-
sponses (e.g., excited, interested) and affective
trust when interacting with a conversational
robot (Hildebrand and Bergner, 2021). Because
benevolence is one of the core elements of trust
(Mayer et al., 1995), it is expected that people
would express positive affect when they trust
their AI teammates.

Acoustic Indicators of Trust

The characteristic of the voices, or acoustic
features, indicate people’s thoughts, feelings,
and attitudes. The same set of words uttered with
different volumes or intonations can express
different feelings and the underlying message of
the words (Sebe et al., 2005). Thus, when un-
derstanding how people express trust, it is
crucial to exanimate acoustic features. Pitch,
measured as the fundamental frequency (F0), is
one key component of acoustic features. Vocal
pitch has been shown inversely related to the
perceived trust of the agent, especially during
the early stages of interactions (Elkins and
Derrick, 2013). Additionally, the high-variance
F0 trajectory, indicated by a high starting F0 and
then a marked decrease at mid-utterance to finish
on a strong rise, was rated high in trustworthi-
ness (Belin et al., 2017). Waber and colleagues
found a correlation between emphasis, defined
as the variations in pitch and volume, and initial
trust in technical communication in hospital
settings (Waber et al., 2015). Additionally,
formants, the concentration of acoustic energy
around a particular frequency in the speech
wave, were also found to associate with trust.
Montano and colleagues found that high-pitch
but low formants voices, affecting perceptions
of masculinity, were trusted more in a co-
operative game (Montano et al., 2017).

While previous research has shown rela-
tionships between conversational features with
perceived trustworthiness of an agent as
a trustee, limited research has shown how
people, as trustors, signal and express trust they
place in that agent. Trust, as both analytic and
affective processes, can govern people’s

behaviors and the way they speak (Lee and See,
2004). It has been shown that people change
their lexical and acoustic cues in conversation
depending on whether they trust the agent or not
on a binary scale (Gauder et al., 2021). However,
to date, no research has shown 1) whether the
continuous scale of trust can also be predicted
and 2) what are the important indicators in
conversations that can predict trust. In other
words, limited research has investigated whether
and how to measure people’s trust via con-
versations. One methodology that can resolve
this question is machine learning (ML). Re-
cently ML has been used to not only predict
certain classes of data (e.g., trust), but also infer
and explain the predictions (Zhao & Hastie,
2021). In our study, the goal was two-fold:
First, we showed that a machine learning ap-
proach can make predictions of trust using
a combination of acoustic and lexical indicators
extracted from conversations. Second, we
identified the important lexical and acoustics
features underlying these predictions, which
provide insights for future trust management in
HAT.

METHODS

Estimating trust using machine learning (ML)
requires crafting a situation that produces var-
iations in trust and generates repeated measures
of trust. First, large variations in a ground truth
trust measure are needed. We used a well-
validated variable, automation reliability,
which has shown a strong causal relationship
with trust, as a proxy to induce variations of trust
(Desai et al., 2012; Lee and See, 2004; Li et al.,
2019). Second, a well-labeled target response
(i.e., trust) is needed for supervised ML models.
Thus, we collected subjective trust ratings along
with conversational data. Third, to generate
trust-relevant utterances, we designed open-
ended conversational prompts with follow-up
questions to elicit trust-related utterances. The
questions were designed to be nondirective,
which probes respondents to describe their own
attitudes and feelings on topics of trust in au-
tomation instead of using the presumed attitudes
and descriptions. Since we manipulated the
automation reliability, we aimed to elicit
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participants’ responses related to the
performance-based trust. The questions were
developed based on our prior research on trust
lexicon and conversational measures; see details
(Alsaid et al., 2022; Li et al., 2020). Finally, trust
changes as a dynamic process that varies across
interactions (Yang et al., 2021). We designed
multiple check-in points after every interaction
with the automated system to ensure we cap-
tured multiple measures of trust.

Data Collection

Study Design. The study was a 2 (re-
liability) × 2 (cycles) × 3 (events) within-subject
study (see Figure 1). Participants performed 12
decision-making tasks associated with manag-
ing a system of a simulated space station: the
Habitat’s Carbon Dioxide Removal System
(CDRS). Participants were assisted by a con-
versational agent with 2 levels of agent re-
liability (i.e., high, and low). Each level of
reliability had 2 cycles of the CDRS tasks, each
including 3 events (i.e., startup, venting, shut-
down). The objective of the experiment setup is
to induce substantial changes in trust and record
the corresponding conversational indicators of
trust for prediction. Adopted from prior research
which used 4.9 and 1.4 out of 5 points for high
and low performance agent (Gauder et al.,
2021), a large variation is designed to change
and anchor people’s trust level in a short-term
study. Thus, the high-reliability conversational
agent provided 100% correct recommendations,
whereas the low-reliability agent provided 20%
correct recommendations. The large difference
between 100% and 20% reliability level is in-
troduced to induce significant trust variations,
which can be further reflected and captured in
their conversations. For each event, the con-
versational agent provides two recom-
mendations (i.e., recommend a procedure,
provide suggestions on whether to rerun the
procedure). For the low-reliability condition, the
conversational agent would only make one
correct recommendation out of six total sug-
gestions. The twelve total events were designed
to elicit various levels of trust through manip-
ulation of the agent’s reliability. At the end of
each event, the agent initiated a conversation by

asking six trust-related questions (see Table 1).
Once the participant finished the conversation,
they then completed a 12-item trust survey on
a 7-point Likert scale (Jian et al., 2000). In total,
each participant had the opportunity for at least
seventy-two conversational turns with the agent.

Participants. A total of 24 participants (18
female, 6 male) were recruited (M = 23.7, SD =
3.6). Participants were screened to have some
technical background (e.g., completion of STEM
courses). Due to the safety concerns of COVID-
19, the study took place online. It was a 2-day
study with each day lasting up to 2 hours. In total,
the studywas approximately 4 hours. Participants
received $30 per hour for up to $120. This re-
search complied with the American Psycholog-
ical Association Code of Ethics and was
approved by the Institutional ReviewBoard at the
University of Wisconsin–Madison.

Apparatus. The experimental task uses the
Procedure Integrated Development Environ-
ment (PRIDE) which is an automated procedure
software, to maintain the space station habitat
using the Carbon Dioxide Removal System
(CDRS) (Izygon et al., 2008; Schreckenghost
et al., 2014). A conversational agent, named
Bucky, was preprogrammed with procedure
protocols to provide recommendations to help
participants maintain follow the PRIDE proce-
dures to maintain the habitat. Google Dialog-
flow, a Natural Language Understanding (NLU)
platform was used to design and integrate the
user interface. Participants were asked to di-
rectly speak to the conversational agent using
their microphone. Keyboard and button inputs
were also provided. Text data was automatically
transcribed using speech-to-text technology.
Both audio and text data were collected.

Procedure. After signing the consent form,
participants completed training on PRIDE,
CDRS, and Bucky systems. During the study,
participants had 25 minutes to control the
CDRS by completing all three events (startup,
venting, and shutdown) before their crew
experienced CO2 poisoning. For each event,
the participant made two essential decisions
with Bucky’s aid (i.e., procedure recommen-
dation and verification suggestion). Partic-
ipants will be asked to select the correct
procedure to activate CDRS system in
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a specific order based on their knowledge from
their training session. Bucky would provide
a recommended procedure of CDRS and
participants could either accept Bucky’s rec-
ommendation or reject it and manually select
an alternate procedure among three system
generated procedures. Once the procedure was
selected, PRIDE automated the procedure
execution. While the procedure was running,
participants engaged in a secondary task of
checking and reporting the CDRS status to
Bucky. If the participant selected the wrong
procedure, an error occurred. The participant
then had to stop the procedure and reselected
another procedure. If participants rerunning
the procedures exceeded the 25-minute time

limit, a warning would occur about the crew
experiencing CO2 poisoning and the cycle is
terminated. After the procedure finished
running, Bucky provided a verification of the
system status and make suggestions on
whether participants should rerun the pro-
cedure. Again, participants could decide to
accept or reject the suggestion. Once the
participant finished the event, Bucky ad-
ministered six conversational questions with
some variations to avoid being repetitive (see
Table 1). After conversational questions,
participants completed the trust question-
naire. The total time of each cycle, including
the trust conversation and questionnaire, was
approximately 40 minutes. At the end of the

Figure 1. Study design with 12 points of trust measurement.

Table 1: Examples of Conversational Trust Questions

Q1 How would you describe your experience selecting the procedure?
What are your overall feelings during procedure selection?

Q2 Why would you feel that? Can you explain your answer in more detail?
Make sense. Why would you have that feeling? Can you elaborate on that?

Q3 Can you talk more about my performance in providing the recommendation?
Thank you. How would you describe my performance in giving you the recommendation?

Q4 That makes sense. Which procedure did you select?
Okay, thank you. Which procedure did you select?

Q5 Can you tell me more about your strategy for picking that procedure?
What made you choose that procedure? Can you tell me more?

Q6 How can I be more helpful in terms of providing recommendations?
I see your strategy there. How can I be more helpful next time?

1728 June 2024 - Human Factors



study, participants were debriefed and
compensated.

Machine Learning Pipeline

Figure 2 shows the machine learning pipeline
we adapted from previous research (McDonald
et al., 2020; McDonald et al., 2020). The con-
versations were first separated into audio, text,
and combined data analysis streams. The audio
and text features were extracted using speech
signal processing and text analysis. The pro-
cessed features were then used to fit the machine
learning models. The best-performing model
was selected based on root mean squared error
(RMSE) and adjusted R-squared (R2

adj). RMSE
indicates the absolute fit of the model in the
units of the response variable and R2

adj in-
dicates the variance in the response variable
that can be explained by the predictor varia-
bles adjusted for the number of predictions in
the model. The dataset was processed and
analyzed using R (R Development Core Team,
2011).

Data Preprocessing. For the response vari-
able, trust, we calculated the subjective trust
rating by averaging items 1–5, which represents
trust, and averaging items 6–12, which repre-
sents distrust (Jian et al., 2000). We reversed the
distrust score and averaged it with the trust score
to get the final trust score.

For audio data, all the audio files were im-
ported in R to extract acoustic features using
the wrassp package (Bombien et al., 2021). A
formant estimation function is used to calcu-
late the first four formants and their band-
widths. For each formant, the mean and
standard deviation were extracted. Funda-
mental frequency and Mel-frequency cepstral
coefficients (MFCCs) were extracted using
their mean and standard deviation. Since
acoustics features are gender sensitive (Cartei
et al., 2012), all acoustics features are nor-
malized within gender.

For text data, text analysis was used to extract
lexical features. We included a binary variable
called, translation error, to indicate whether the
speech-to-text translation had errors, which
shows a 70% accuracy rate. Data were manually

cross validated by two researchers and corrected
the errors for the text analysis. Then, the re-
sponse length was calculated based on the raw
text input. The text was tokenized and punctu-
ation and stop words were removed, and the
words were stemmed. First, term frequency-
inverse document frequency (tf–IDF) was cal-
culated based on the frequency of a term within
each document, normalized by how often the
term is found in the other documents. Next,
sentiment scores were calculated using senti-
ment dictionaries, such as NRC Valence,
Arousal, and Dominance (NRC-VAD) Lexicon
(Mohammad, 2018) and AFINN (Nielsen,
2011), which include a list of English terms
with their valence, arousal, and dominance
scores. Data were dropped if no words in an
utterance matched any words in the sentiment
dictionaries. Using only sentiment-related words
and ignoring linking words to score sentiment
can be problematic. For example, simply ex-
tracting “happy” in the phrase “I am not happy”
can incorrectly score as positive sentiment. To
address this, we included valence shifters (i.e.,
negators, amplifiers, and intensifiers) by con-
sidering the context around sentiment-related
words using the sentimentr package (Rinker,
2017) (see Table 2 for details).

A combination of audio and text features was
used to predict trust. The two feature sets were
merged based on unique audio identifiers as-
sociated with each utterance in the study. A z-
score standardization was applied to all features
and the response variable.

When conducting machine learning, it is
important to reduce the number of input features
(i.e., noninformative, redundant, or correlated)
to improve model performance. First, the Boruta
algorithm was used to reduce the feature space
based on two-sided z-score tests based on
a random forest-based classification algorithm
(Kursa and Rudnicki, 2010). This algorithm uses
the dataset to identify relevant features, rather
than on manual elimination based on domain
constructs. Next, multicollinearity (high corre-
lation between two or more predictor variables)
was reduced using Variance Inflation Factors
(VIF). VIF measures how much the variance of
a regression coefficient was inflated due to
multicollinearity in the model. We calculated
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a VIF score for all features and removed any
features with a score higher than 10 because
scores higher than 10 indicate exceptionally
strong multicollinearity (O’Brien, 2007).

Algorithm Training and Evaluation. The al-
gorithms were selected based on three main
types of machine learning models (i.e., gradient
descent-based, distance-based, and tree-based)
as well as stacking ensemble models using
caretEnsemble package. The ensemble models
specify a higher-order model to learn how to best
combine the predictions of sub-models. A total
of eight models were evaluated:

1. Linear model.
2. Support Vector Machines with Radial Basis

Function Kernel (svmRadial).
3. K-nearest neighbors (kNN).
4. Random Forest (RF).
5. EXtreme Gradient Boosting using tree-based

models (XGBTree).
6. EXtreme Gradient Boosting using a generalized

linear model (XGBLinear).
7. Linear ensemble model, which fits linear models

across all the modes above.
8. Generalized ensemble model, which fits linear

models via penalized maximum likelihood.

These eight models were fitted to all three
feature sets (i.e., audio, text, and combined).

Therefore, a total of 24 models were trained. For
each model, we conducted a grouped of 10-fold
repeated cross-validation with 3 repetitions.
Grouped k-fold cross-validation considers data
from the same participant, whomay have similar
acoustic features or word choices, as a non-
overlapping group so that the same participant
does not appear in two different folds. This
method can avoid within-subject data leakage by
ensuring the same participant not included in the
training and test datasets. The predictive per-
formance observed with group k-fold cross-
validation estimates performance on another
sample of participants from the same population.
Therefore, this method penalizes the within-
subject similarities and reduces overly opti-
mistic estimates of model performance.

Once the models were trained, we evaluated
how well they predicted the response variable,
trust, using two metrics: root mean squared error
(RMSE) and adjusted R-squared (R2

adj). RMSE
is the square root of the variance of the residuals,
which indicates the absolute fit of the model to
the data in the units of the response variable. The
smaller RMSE, the closer the observed data are
to the predicted values, indicating better per-
formance. R2

adj indicates the variance in the
response variable that can be explained by the
predictor variables with a penalizing factor for
adding independent variables, ranging from 0 to

Figure 2. Machine learning pipeline to estimate and explain trust.
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1. The higher the R2
adj, the better the model

performance.
Model Explanation. After picking the best

performance model, we explained the model

by visualizing the most important features for
trust prediction. First, a Variable Importance
Plot (VIP) was employed. The VIP shows the
mean decrease in accuracy associated with

Table 2: Definition of Reduced 20 Features

Category Feature Description

Audio nSample A total number of records/samples in the sound.
x, SD (F0) Mean and standard deviation of fundamental frequency (F0). The

fundamental frequency is defined as the lowest frequency of
a periodic waveform, which conveys tone, intonation, emphasis, and
physiological information and emotion in the speech (Bishop and
Keating, 2012).

x, SD (F1) Mean and standard deviation of the first formant in vowels (F1). A
formant is the concentration of acoustic energy around a particular
frequency in the speech wave. F1 is inversely related to vowel height.
The higher the F1, the lower the vowel height.

x, SD (F2) Mean and standard deviation of the second formant in vowels (F2),
which is related to the degree of backness. The higher the F2, the
more front the vowel.

x, SD (F3) Mean and standard deviation of the third formant in vowels (F3), which is
related to the degree of roundness. The lower the F3, the rounder
shape of the lip.

x, SD (F4) Mean and standard deviation of the fourth formant in vowels (F4), which
is related to the degree of resonance/larynx. The higher the F4, the
higher the larynx.

x, SD (MFCC) Mean and standard deviation of Mel-frequency cepstral coefficients.
Mel-frequency cepstral coefficients (MFCCs) represent the short-term
power spectrum based on human hearing perception, which is the
most widely used feature in speech recognition.

Text Response length Number of words in text response before any text cleaning (e.g.,
removing stop words, tokenization, stemming, etc.).

TF–IDF Term frequency-inverse Document frequency evaluates how relevant
a word is to a document in a collection of documents.

AFINN The overall sentiment of the utterance using AFINN lexicon (Nielsen,
2011), divided by the square root of total terms with the sentiment,
was scaled from �5 to 5.

Positive AFINN The proportion of positive sentiment is divided by the square root of
total terms and the overall AFINN score.

Context sentiment Sentiment score considering the context for the utterance (window size
of 4 words before and 2 words after) and searched for valence
shifters. The finalized score was summed and divided by the square
root of the word count yielding a context sentiment score scaled from
�5 to 5 for each sentence (Rinker, 2017).

Nonsentiment
proportion

The proportion of the words within each sentence that do not have any
sentiment is based on the lexicon.

Translation error A binary indication of the reliability of the speech-to-text software.
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removing a feature from the algorithm.
However, the value and ranking of important
variables in VIP simply represent the impor-
tance based on the loss function. The rela-
tionships between features and trust remained
unknown. We further used, Partial De-
pendence Plot (PDP), to show the relationship
features and the response variable, accounting
for the average effect of the other predictors in
the model (Greenwell, 2017). The PDP curve
shows how much the variable affects the final
prediction at specific values of the variable.
While PDP provides an average effect of
a feature, it does not show specific instances or
participants. An Individual conditional ex-
pectation (ICE) shows the effect of a feature
for individual observations, resulting in one
line per observation, compared to one line
overall in partial dependence plots. Compared
to PDP, which plots the target covariates’
average partial effect on the predicted re-
sponse, ICE plots each observation reflecting
the predicted response as a function of other
covariates, conditional on the observed fea-
ture. A PDP is the average of the lines of an
ICE plot.

RESULTS

The 24 participants can have at least 72
conversational turns with the agent, which
leads to at least 1728 conversational segments
in total. The audio data contained 1806 seg-
ments, with a mean length of 8.17 s (SD =
10.88). For the text data, we only included
utterances that included sentiments and ex-
cluded answers to question 4 (e.g., I selected
procedure 1) since it does not contain mean-
ingful lexical indicators. The text data con-
tained 810 lines of utterances, with the mean
text length of 38.25 characters (SD = 26.49).
The two datasets were joined by matching the
common audio identifiers, leaving the final
dataset with 810 lines of utterances. The Welch
Two Sample t-test assessed the difference of
trust values by reliability condition (mean in
group high = 5.78, SD = 0.86; mean in group
low = 4.37, SD = 1.44) suggests that the effect
is positive, statistically significant, and large
(difference = 1.41, 95% CI [1.05, 1.70], t

(146.46) = 8.42, p < .001; Cohen’s d = 1.20,
95% CI [0.89, 1.51]).

Feature Engineering

A total of 23 features were extracted, in-
cluding 13 for audio and 10 for text. The Boruta
algorithm identified 23 features as important.
The VIF score for multicollinearity identified 3
features above 10, which were removed. The 20
remaining features are described in Table 2.

Trust Estimation

Table 3 shows the machine learning model
performance across text, audio, and the com-
bined features. Using only audio features, kNN
outperformed other models in terms of R2 and
RMSE values. For text-only features and the
combined text and audio feature sets, both
metrics showed that random forest outperformed
other models by having the lowest RMSE and
the highest R2

adj. Compared across the modality,
the combined features showed the best pre-
diction with the RMSE score of 0.56 and the
R2

adj score of 0.71. Compared to the linear
baseline model, the best-performing model’s
R2

adj improved from 0.26 to 0.71. This means
that trust depends on more complicated rela-
tionships that can be captured by a linear model.
The random forest model can explain the 71%
variance of trust. The result is notable because
cognitive states, especially trust, are difficult to
predict.

Model Explanation

Because the random forest model with the
combined features shows the best performance,
we applied VIP and PDP to investigate the re-
lationships between the features and trust. The
VIP, shown in Figure 3, indicates that context
sentiment from the text data, the mean of for-
mants, MFCCs, and standard deviation of fun-
damental frequency were the most important
features for predicting trust. Based on the VIP
ranking, we used the top 8 features for the
following analysis.

To investigate feature relationships with trust,
Figure 4 shows the PDP plots of the top eight

1732 June 2024 - Human Factors



most important variables, ordered left to right,
top to bottom, by importance. The plot shows
the relationships between the response variable
(i.e., trust score) on the y-axis and the conver-
sational features (e.g., context sentiment, F2, F1)
on the x-axis. Most of the features show a sig-
moid-shaped curve, which suggests that the trust
transition from low to high follows a nonlinear
logistic increase. In other words, a small change
in people’s conversational cues in a particular
region signals a large change in trust. For each
pair of relationships in PDP, positive relation-
ships were observed between trust and senti-
ment, F1, F2, and F3. The F4 and mean of MFCC
revealed an inverse relationship with trust. The
standard deviation of the fundamental frequency

shows a u-shaped contour. The two-way PDP in
Figure 5 shows how trust depends on the joint
value of lexical and acoustic features. This al-
lows us to examine the interaction effect of
lexical and acoustic features on trust prediction.
Take context sentiment and F2 as an example,
trust is higher (represented by a lighter shade)
when context sentiment in the text and F2 in
voice are in a particular range—trust depends on
a nonlinear combination of the two features.

We further identified conversational features as
medicators between an exposure (i.e., reliability)
and a response variable (i.e., trust).We adopted the
multiple mediator analysis method using R
package mma (Yu & Li, 2017). Following the
mediation analysis criteria (Baron and Kenny,

Table 3: Machine Learning Models Evaluation Using RMSE and Adjusted R2

Linear
model kNN svmRadial RF XgbTree XgbLinear

Linear
Ensemble

Generalized
ensemble

Text RMSE 0.90 0.90 0.91 0.78 0.82 0.79 1.26 0.94
R2

adj 0.15 0.15 0.16 0.34 0.29 0.37 0.04 0.11
Audio RMSE 0.93 0.78 0.88 0.84 0.95 0.87 2.66 2.54

R2
adj 0.16 0.41 0.27 0.32 0.20 0.29 0.25 0.25

Combined RMSE 0.86 0.71 0.71 0.56 0.62 0.56 0.78 0.86
R2

adj 0.26 0.48 0.51 0.71 0.61 0.70 0.64 0.68

Figure 3. Variable importance values for the RF algorithm based on the importance, which is calculated by the
mean decrease in accuracy associated with removing the feature and scaled by its standard deviation.
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1986), we identified a partial mediation occurred
between reliability on trust via conversational
features with a Sobel test for the indirect effect,
z = �5.86, p < .001. This suggests that reliability
influences how people communicate as an un-
derlying mechanism, which in turn influences
people’s trust. The proportion of the effect of the

reliability on trust that goes through the medicator
is 0.17 (for details, see Supplementary Material).

Figure 6 shows the Individual conditional
expectation (ICE) plot, which can show how
individual cases (i.e., conversational turns) de-
part from the average behavior. Different cases
have different starting predictions in the ICE plot

Figure 4. Partial Dependence Plot (PDP) for the eight most important features based on variable importance plot
in Figure 3. The ranges of all features on the x-axis are scaled to 0. The predicted trust on the y-axis is in the range
of 1–7.

Figure 5. Two-dimensional partial dependency plots for context sentiment, F2, F1, and MFCC mean based on the
RF algorithm. The shading represents the predicted trust scores. The outlines of the region show the predictor space
that the model was trained on.
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(i.e., high versus low trust), so it is hard to tell
whether the curves differ between individuals
based on such a wide range. Figure 7 shows the
centered ICE, in which centers the curves are fixed
to 0 at the minimal value of the trust and shows
only the difference in prediction to this point. The
centered-ICE curves highlight differences between
people and show that the cumulative effects are
consistent across participants. For each feature,
most instances are similar and follow the shape of
curves in PDP, whichmeans changes in the feature
has a similar effect across cases.

DISCUSSION

This paper addressed two questions: can we
measure trust in human-AI conversations? If so,
what are the most important conversational in-
dicators for trust measurement and future man-
agement? For the first question, we designed an
aided decision-making study using the automation
reliability as a proxy of trustworthiness to elicit
large difference in people’s trust reflected in the
human-AI conversations. Results showed that 71%
of trust variation can be predicted using a combi-
nation of lexical and acoustic features using a ran-
dom forest algorithm. The large effect size validates
as a proof-of-concept that trust can be estimated
from the conversations. Compared to prior work on
discrete trust classification (Gauder et al., 2021), our

work further validated the promising evidence of
measuring continuous and real-time trust dynamics
in the human-AI conversation. For the second
question, we identified the most important trust
conversational indicators—context sentiment as
lexical cues, formants, fundamental frequency, and
MFCC as acoustic cues—and showed that they
affect trust in a nonlinear manner: a small change in
people’s conversational cues in particular regions
can signal a large change in trust.

Lexical Indicators of Trust:
Context Sentiment

For the lexical indicator in the conversation, the
context sentiment in the conversation is the
strongest predictor of trust. Context sentiment is the
average sentiment considering valence shifters and
negation in the sentence. For example, “I am not
good” contains the positive word “good,” but the
sentiment score is negative because the sentence
contains the negation ‘not’, which flips the polarity
of the sentence. Results showed that positive sen-
timent predicts higher trust. The result is expected
and consistent with prior research: when people
used more positive words in their conversation,
they rated their trust in the aid higher (Hildebrand
and Bergner, 2021). Because benevolence is one of
the core elements of trust (Mayer et al., 1995),
people express greater affective trust and used

Figure 6. Individual conditional expectation (ICE) plot of predicted trust by the eight most important features. Each
line represents one conversational turn.
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positive sentiment words when interacting with
a conversational agent.

Acoustic Indicators of Trust: Formants,
Mel-Frequency Cepstral Coefficients
(MFCC), Pitch Variation

For acoustic indicators in the conversations,
formants, MFCC, and pitch variation follow
context sentiment as the most important pre-
dictors of trust. As indicated in Figure 4, a high
first formant (F1) and second formant (F2) were
associated with a high level of trust. Formant is
a spectral property of the speech signal that
reflects voice quality as well as linguistic vowel
identity (Goudbeek et al., 2009). The formant
with the lowest frequency is called F1, the
second F2, and the third F3. Prior studies showed
that formants can influence people’s trust per-
ception (Knowles and Little, 2016; Torre et al.,
2020). Our study demonstrated that formants are
also influenced by people’s trust levels. In other
words, trust influences people’s speech pro-
duction and formant articulation.

There are different ways to explain how
trust influences formants in conversations. One
way is to consider trust as an affective process.
Prior research has shown that formants can be
used to discriminate the valance (e.g., positive
or negative) and arousal (e.g., excited or calm)

dimensions of emotions (Kim et al., 2011):
high arousal emotions result in a higher mean
F1, whereas positive valence results in a higher
mean F2 (Goudbeek et al., 2009). Thus, our
results implied that when people are in a high
level of trust, people express a high F1 and F2
in their voice, indicating trust as a positive
valence and high arousal emotion. Another
potential explanation is that people use dif-
ferent vowels when articulating different
levels of trust. Formants are directly associated
with tongue positions and pronunciation of
different vowels. The F1 was associated with
the height of the tongue position (i.e., top or
bottom) and the F2 was associated with the
backness of the tongue position (i.e., back or
front). A high F1 and high F2 would be lower
and front tongue position for words like “bat”
(æ) versus a low F1 and low F2 would be
“boot” (u). Results showed a high F1 and F2 for
higher trust scores, meaning that participants
were saying more words that contained vowels
in bottom-front vowels (e.g., æ). The third
explanation is when trust is higher, people
have a “smiling voice” indicated by formants.
Past studies have shown that when people
smile, the first two formants are increased,
which leads to a higher perceived trust (Torre
et al., 2020). Future studies should further
investigate the causal relationships between
formants and trust.

Figure 7. Centered-ICE (c-ICE) plot of predicted trust by top 8 important features. Each line is fixed to 0 at the
minimal values of each feature.
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MFCCs are coefficients that collectively
make up an MFC, which represents the short-
term power spectrum of a sound. MFCC is
often used to recognize the emotion of
a speaker from their voice. Prior research has
shown that the mean and standard deviation of
MFCC can classify hot anger, neutral, sadness,
and happiness (Bhimavarapu et al., 2021;
Lalitha et al., 2015; Nalini et al., 2013). Our
result showed consistent findings with prior
studies that MFCCs are important features for
perceived trust in interpersonal group inter-
actions (Spitzley et al., 2022). Based on the
authors’ knowledge, our study is the first to
show that MFCCs can be used to predict
people’s trust in their conversations with
a virtual agent.

In the past literature, trust perception is usually
associated with pitch: voices with low F0 are
considered more trustworthy than voices with high
F0, in both male and female voices (Montano et al.,
2017). To our surprise, F0 is not the most important
feature to predict how people express their trust
levels. Instead, the variance of F0 is considered
a more important indicator of trust as shown in
Figure 3. Syed and colleagues have demonstrated
that a more dynamic and varied pitch contour is
viewed as more trustworthy compared to flat in-
tonation (Syed et al., 2021). Knowles and Little also
showed that dynamic voices sounded more co-
operative than monotone voices (Knowles and
Little, 2016). High variation in F0 has been asso-
ciatedwith prosocial and pleasant vocal attributes in
human child-directed speech (Trainor et al., 2000).
Thus, when people express a high-level trust, they
also exhibit complex contour of the pitch that may
signal affiliation.

Additionally, our study demonstrated that
conversational features served as a partial me-
diator to predict trust. Results supported the
causal relationships between conversations, re-
liability, and trust: automation reliability influ-
enced the way people communicated, which can
be used to predict trust. The causality implied
that these identified conversational features can
be used as conversational affordances of the
agent to further manage trust. Future studies can
also consider use communication to explain the
process of the effects on human-AI team out-
comes (O’Neill et al., 2022).

Implications

Measuring trust from conversations is a nat-
ural, unobtrusive, novel method to support
human-AI teaming. Our findings on predicting
trust using lexical and acoustic features provided
an initial validation in measuring trust un-
obtrusively and dynamically in conversation. To
date, limited research has been conducted or
discussed the development of a standardized
conversational measurement of trust. Our study
used predefined prompts and conversational
structure to elicit people’s trust-relevant re-
sponses in a performance-based task. Since
conversations are highly context-dependent,
future studies are needed to test the ecologi-
cal validity by generalizing these measures to
other contexts. Additionally, how to measure
trust in a free-flow conversation remains un-
solved. The main bottleneck is the technical
limitation of the state-of-art conversational
agents, which are usually based on intent de-
tection and predefined conversational flows.
With the emerging powerful large language
models (e.g., ChatGPT), it can open the door
for more complex and open-ended con-
versations for establishing a standardized
conversational measurement of trust.

Once trust can be measured in conversation,
an important next step is trust management.
For a system to be trustable, it will have to
adapt to its user’s trust levels. In performance-
based human-AI interactions, we can compare
the estimated people’s trust levels with the
system capability and identify whether people
are over- or undertrusting the system. Based on
findings in our study, an adaptive conversa-
tional agent can be developed: the conversa-
tional agent could incorporate these identified
trust indicators to actively probe, repair, and
temper trust (Chiou and Lee, 2021). When
people overtrust the agent, meaning people’s
trust is higher than the actual trustworthiness,
the agent can signal the trust tempering con-
versational cues, such as using the negative
sentiment and lower formants. The next
question would be whether these identified
trust indicators show the same effect on trust
perception. In other words, these identified
conversational features can predict trustor’s

ESTIMATE TRUST VIA CONVERSATION 1737



trust, but can they influence perceived trust-
worthiness of trustee? Our findings show
a mixed result from the prior literature: al-
though pitch significantly affected perceived
trustworthiness, it is not the most important
feature when people express their trust in the
conversation. On the other hand, sentiment and
formants show that they can be used to both
predict trust and influence perceived trust-
worthiness (Montano et al., 2017). Future
studies are needed to show whether the
identified conversational indicators are effec-
tive to manage people’s trust.

Limitations and Future Work

There are several limitations of this study.
First, the conversation is limited in size and
scope. Our study focused on the influence of
reliability on trust in a performance-based in-
teraction. The word use and other conversational
cues in our dataset might not generalize to other
trust dimensions (e.g., purpose-dimension trust)
or domains of trust (e.g., human-human trust). A
generalized protocol of trust-related questions
should be developed and validated. Additionally,
the acoustic features extracted from con-
versations can be affectively laden. Future studies
should consider using other conversational
analysis techniques to extract both analytic and
affective processes to understand trust (Li et al.,
2023). Second, the conversation design between
humans and agents is restricted due to the
technical limitations of the chatbot. Although the
variation of agents’ responses and questions was
designed, the conversational agent in our study is
a decision-tree-based agent, rather than an in-
telligent agent that can hold a rich conversation.
Therefore, the conversation complexity and flow
were limited. Advances in conversational agents
will produce richer data for trust measurement.
Third, the extreme manipulation of agent re-
liability (i.e., 100%, 20%) in our study was de-
signed to elicit trust difference, which can face the
low ecological validity. Since prior studies have
shown that a reliability below 70% is the
“crossover point,” where unreliable automation
can be worse than no automation at all (Dixon
and Wickens, 2006; Wickens and Dixon, 2007),
future studies should further test the differences

of conversational indicators of trust with a gra-
dient level of automation reliability (e.g., 70%,
80%).

CONCLUSION

To enhance the human-AI teaming, AI needs to
measure and manage trust in real time. Conver-
sational data provides a novel approach to measure
trust unobtrusively. This study showed such real-
time, conversational trust measures are possible by
training machine learning models on lexical,
acoustic, and combined conversational features. A
random forest model that used the combination of
lexical and acoustic features explained 71% of the
variance in self-reported trust. The combination of
lexical or acoustic features outperformed either
alone. We identified the most important lexical and
acoustic cues and further showed that trust transi-
tion follows a nonlinear shift. These results showed
the importance of including both audio and text
features when measuring trust via a conversation.
An open question is whether they might be used to
modulate the voice of the conversational agent to
manage the trust.
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KEYPOINTS

· Trust can be estimated using a combination of text
and audio data. A machine learning model trained
on the combined features outperformed those
based on a single modality.

· Based on the Variable Importance Plot (VIP), we
identified that the most important features to es-
timate trust were average sentiment considering the
valence shifters in text, the mean of formants, and
Mel-Frequency Cepstral Coefficients (MFCC) in
voice.

· Based on the Partial Dependence Plot (PDP) which
shows the relationships between trust and
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conversational features, we identified that a non-
linear shift of trust as features change.

· Lexical sentiment and acoustic formant features
showed that trust is associated with the positive
valence and high arousal emotion.

· Conversational features partially mediated the re-
lationship between reliability and trust. The causal
relationship suggests that these identified features
can be used to manage trust.
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