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ABSTRACT

Human-Al conversation provides a natural, unobtrusive, yet under-explored way to investigate
trust dynamics in human-Al teams (HATs). In this paper, we modeled dynamic trust evolution in
conversations using a novel method, trajectory epistemic network analysis (T-ENA). T-ENA captures
the multidimensional aspect of trust (i.e., analytic and affective), and trajectory analysis segments
conversations to capture temporal changes of trust over time. Twenty-four participants performed
a habitat maintenance task assisted by a conversational agent and verbalized their experiences
and feelings after each task. T-ENA showed that agent reliability significantly affected people’s
conversations in the analytic process of trust, t(38.88) = 15.18,p < 0.001, Cohen’s d = 4.72, such
as discussing agents’ errors. The trajectory analysis showed that trust dynamics manifested
through conversation topic diversity and flow. These results showed trust dimensions and dynam-
ics in conversation should be considered interdependently and suggested that an adaptive con-
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versational strategy for managing trust in HATSs.

1. Introduction

As artificial intelligence (AI) becomes increasingly capable
and can outperform humans in certain tasks, AI may go
beyond being tools to cooperate as teammates (Chiou &
Lee, 2023; Johnson & Vera, 2019). Considering trust in
human-AI teams (HATSs) is a step beyond current consider-
ations of trust in automation and poses new challenges for
measuring, modeling, and managing trust. An effective
interdependent team requires trust models that reflect team
processes and how a team’s activity unfolds over time. This
requires a continuous and observable stream of data to
record the cognitive process of trust dynamics. Similar to
human-human teams, HATs also need to exchange and
update the information to achieve a joint task. Conversation
can provide such contextual and process-based means for
modeling trust (Cooke et al., 2013). Conversations naturally
reflect coordination, which can be used to show changes in
human-AI relationships over time. Additionally, trust can be
inferred from conversations via people’s tone of voice and
choice of words (Li et al.,, 2022). Inferring trust from con-
versation aligns well with the nature of interdependent HAT
and provides an essential means to model and analyze trust
dimensions and dynamics through team interactions. Thus,
modeling trust dynamics in HATSs using conversational data
provides a promising yet under-explored approach.

Since trust in HATs conversation is highly contextual,
dynamic, and evolves over time, we adopt a novel
approach—trajectory epistemic network analysis (T-ENA)—to
develop a dynamic model of trust evolution in human-agent

conversation (Brohinsky et al., 2021). This trust model rep-
resents coded conversational data using epistemic network
analysis (ENA). ENA helps provide a contextual understand-
ing of conversational data (Shaffer, 2017). Similar to the
structure of social network analysis, the nodes in ENA rep-
resent trust-related concepts that are defined using a trust
framework. These nodes help highlight the multidimensional
nature of trust. The edges provide the connections between
the concepts based on their co-occurrence in human-Al
conversations. The trajectory analysis then characterizes
interactions as a trajectory to show temporal changes in
trust in AL In summary, we used T-ENA to model trust
dimensions and dynamics in human-AlI conversations. We
make three contributions to this paper: (1) we modelled
trust dynamics using conversational data in human-Al team-
ing; (2) we adopted a novel method, T-ENA, to show the
trust dimensions and temporal dynamics; (3) we identified
implications of trust-calibrated conversational agent design.

2. Background

The following sections outline the theoretical foundations
for the multidimensional and temporal aspects of trust. To
model trust dynamics, we propose using human-agent
conversational data. Existing approaches to modeling trust
using conversation are discussed and the benefits and draw-
backs of each approach are highlighted. Based on the nature
of the trust dynamics and limitations of prior approaches,
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we adopt a novel method, trajectory epistemic network ana-
lysis for modeling trust.

2.1. Trust dimensions

Trust, defined as “the attitude that an agent will help achieve
an individual’s goals in a situation characterized by uncer-
tainty and vulnerability” (Lee & See, 2004, p. 51), has been
studied for decades to understand and manage the relation-
ships between people and automation. Existing trust frame-
works show how trust depends on the interplay between
analytic, analogic, and affective cognitive processes. The ana-
lytic process refers to cognitive processes that involve delib-
erative analysis (Hoff & Bashir, 2015; Lee & See, 2004). The
analogic process refers to cognitive processes that rely on
rules, intermediaries, and environmental context. The affect-
ive process refers to cognitive processes guided by emotion.
Thus, in understanding and modeling trust in HATSs, these
cognitive processes must be highlighted. Since trust can
manifest in different conversational cues (Elkins & Derrick,
2013; Li et al., 2022; Waber et al., 2015), conversational cues
can be used to model cognitive processes of trust.

We know little about the interplay between different cog-
nitive processes underlying trust in human-agent conversa-
tion. Miller argued that analogical and affective trust plays a
conceptually greater role than the analytic process (Miller,
2005) because people who experience negative affective or
analogical trust may stop accumulating information for ana-
Iytic trust. Yet, in high-risk and safety-critical situations,
people are more likely to use analytic processing if they
have sufficient cognitive resources (Hoff & Bashir, 2015).
The interplay of a more rational analytic process and a
more automatic affective process has not been formally
studied and modeled. To resolve this research gap, we
designed a decision-making task with various levels of
conversational agent reliability to reflect their cognitive
processes in conversations. The factor, automation reliability,
which is governed by the analytic process, has been well-
studied and shows the causal relationship on trust
(Dzindolet et al., 2003). For the affective process, the cir-
cumplex model describes affect using two-dimensional
arousal-valence axes to describe human emotions. For
example, the affect excited is high arousal and positive
valence affect, whereas sad is low arousal and negative
valence. Trust has been shown to be influenced by
the valence and arousal stimulus. Dunn and Schweitzer
show that positive valence (e.g., happiness, hope) increases
trust, while negative valence (e.g., fear, guilt) decreases trust
(Dunn & Schweitzer, 2005). Yet, how the affective process
of trust is mapped on the affect circumplex model in
human-agent not well understood.
Additionally, how the affective process interacts with the
analytic process is under-studied. In this study, we aimed to
elicit various levels of trust and showed the significant dif-
ference and interplay between the affective and analytic
processes.

conversations is

2.2. Trust dynamics

Another important aspect of trust modeling that merits
more attention is its temporal characteristics. A shift from
the snapshot view of trust to a dynamic view of trust is
important (Yang et al, 2021) because trust is time-
dependent and evolves throughout human-agent interaction
(Kaplan et al., 2021). The evolution of trust depends on
varjous automation characteristics and experiences as rela-
tionships between teammates mature (Korsgaard et al., 2018;
Luo et al, 2022). Examining trust dynamics allows us to
assess the influence of the recency effect, as interactions that
happened more recently may have more influence than
those that happened earlier (Desai et al.,, 2012). Thus, ana-
lyzing and modeling the temporal changes offers a nuanced
view of the evolution of trust in the HATs.

To model trust evolution, trust should be measured at
multiple instances in time and modeled by including a time
index in the model. Lee and Moray adopted time series ana-
lysis to uncover trust dynamics (Lee & Moray, 1992). Lee
and Gao extended decision field theory (DFT) to describe
operators’ information accumulation and multiple sequential
decisions in supervisory control situations. This computa-
tional model predicted trust dynamics (Gao et al., 2006; Gao
& Lee, 2006). Yang et. al. proposed a computational model
which proposes that trust at any time ¢, follows a Beta distri-
bution with good prediction accuracy (Yang et al., 2021).
Although modeling trust evolution is relatively limited, there
is a long history of modeling human behaviors and attitudes
with a time-dependent dynamical system approach.
Gottman et al. (2002) showed how marriage outcomes can
be modeled by using dynamical system analysis, which
focused on the temporal dynamics of partner conversation.
Using such dynamical systems methods to model relation-
ships is becoming more prevalent (Demir et al., 2021).

The multidimensional and temporal aspects of trust are
not independent. Instead, the influencing factors and their
effects on various processes of trust dimensions might also
vary throughout the human-Al interactions. In modeling
interpersonal trust, Korsgaard and colleagues outlined a
stage model that captures the trust formation from an early
stage of calculus-based to a knowledge-based trust and even-
tually an identification-based trust that reflects values and
goals (Korsgaard et al.,, 2018; Lewicki & Bunker, 1996). In
various stages of trust, predictors affect trust systematically
and vary over time (Korsgaard et al., 2018). Kaplan and col-
leagues proposed a dynamic model of trust with time as the
horizontal axis and interaction between various trust antece-
dents on the y-axis (Kaplan et al, 2021). In sum, prior
research highlights the importance of time as a moderator
on different trust dimensions. However, to the authors’
knowledge, limited research empirically investigates the rela-
tionship between the multidimensional and temporal aspects
of trust, especially in human-agent conversation. In this
paper, we modelled trust dimensions by decomposing the
cognitive processes (i.e., analytic and affective) and examine
their relationships with temporal dynamics in the human-
agent conversation.



2.3. Modeling trust in conversation

A critical challenge in modeling trust is to accommodate the
highly contextual, dynamic, and evolving relationship
between humans and Al teammates throughout the inter-
action. To model latent variables such as trust, it must be
inferred through indirect indicators, such as subjective,
behavioral, and physiological measurements. Although sub-
jective trust ratings are treated as the gold standard in
human-automation interaction, they do not fully reflect trust
dynamics because it is often obtrusive and one-shot. The
interruptions and the deliberate thinking involved while self-
reporting attitudes towards automation do not represent the
joint cognitive processing that happens in human-Al
cooperation. While using behavioral measures of trust such
as compliance and reliance provide a more fine-grained
sampling of trust throughout the interaction, it strongly
depends on the task and is limited to the available decision
spaces (Kohn et al., 2021). Physiological measures, such as
electrodermal activity, eye movement, and heart rate, can
provide real-time trust indicators with greater sensitivity.
However, physiological measures also suffer from challenges,
such as outcomes that must be analyzed and contextualized
with expert knowledge and examination during periods
where trust is active and relevant (Kohn et al., 2021). These
challenges suggest a need for alternative measures of trust.

One under-explored trust source is conversation data.
Conversational data can be considered a mixture of lexical,
semantic, phonological, and pragmatic representations of the
conversations. In other words, people naturally express their
trust attitudes via the words they use, the sentence structure,
and the tone of the voices in their conversation, which are
all contextualized. People express their trust not only
through what they say (e.g., the sentiment of the words),
but also via how they say it (e.g., formants) (Li et al., 2022).
Based on interactive team cognition theory, communication
represents team cognition and can serve as a non-obtrusive
measure of team interaction dynamics (Cooke et al.,, 2013).
The conversation is also essential for trust building and cali-
bration, which in turn, can promote effective human-Al
teaming (Fuoli & Paradis, 2014).

Prior research has used both qualitative and quantitative
approaches to identify and model trust in conversational
data. Qualitative analysis, such as grounded theory, provides
a rigorous and systematic approach to identifying situated
meaning and systematic patterns in the data (Oktay, 2012).
However, compared to a machine-aided approach, manual
coding is often laborious, limited to small volumes of data,
and subject to the coders’ domain knowledge. For quantita-
tive analysis, such as text analysis, the dominant approach
treats the conversations as bag-of-words, which assumes
words are independent units. This approach ignores the
meaningful context and patterns in the conversation. A
machine learning approach can combine lexical and acoustic
features to predict trust in the conversational agent (Li
et al., 2022); however, machine learning focuses on the fea-
ture level and ignores the rich context and deep meaning of
the conversation. In other words, the connections between
the features and the meaning associated with features are
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situated within the context that might benefit from qualita-
tive analysis. Moreover, the sequence of the conversation is
often lost when processing using a bag-of-words approach.
Thus, to capture trust dynamics, we modelled two aspects:
(1) Trust dimensions: the connection to theoretical founda-
tions of trust and cognitive processes in conversations,
rather than decontextualized feature; (2) Trust dynamics: the
temporal aspect of trust evolution throughout the interac-
tions, rather than aggregation or snapshot of trust.

2.4. Trajectory epistemic network analysis

To characterize trust dimensions and dynamics, we applied
Trajectory Epistemic Network Analysis (T-ENA), which can
both decompose multidimensional trust using an Epistemic
Network Analysis (ENA) and project the trajectory of the
network structure over time.

ENA is a quantitative ethnographic technique that esti-
mates the network structure of coded data based on the co-
occurrence of coded elements that define connections
between the coded data (Shaffer, 2017). Similar to Social
Network Analysis (SNA), which analyzes relationships
between people, ENA can quantify the changes in both
strength and structure of connections between coded ele-
ments. In our analysis, coded elements were parts of the
conversation but could also include other behaviors.
Originally designed to model theories of cognition, dis-
course, and culture challenges in learning analytics, ENA
assumes that the structure of the connections is more
important than the mere presence of those elements in isola-
tion (Andrist et al., 2015).

ENA has been applied to many domains because it can
quantify complex qualitative data, such as gaze coordination
and social interactions in collaborative work (Andrist et al.,
2015) and shared agency in online collaborative learning
(Tan et al., 2022). Prior research has demonstrated success-
ful applications of ENA to human factors and ergonomics
(HFE) domains because the visual representations can help
researchers quickly identify and compare the difference
between groups (Weiler et al., 2022; Wooldridge et al,
2018). Additionally, the differences can be quantitatively
defined with the support of qualitative evidence from the
conversation. In this paper, we applied ENA to construct
and visualize a multidimensional space of trust based on
analytic and affective  processes in  human-agent
conversation.

To model trust dynamics, one major limitation of ENA is
that it typically aggregates data across conditions and time
while ignoring temporal features. Trajectory ENA considers
the temporal structure to reflect process-oriented concepts,
such as trust dynamics. T-ENA accounts for the change in
the network structure that evolves by incorporating a time
index or temporal segmentation. By dividing the complex
ENA into time segments, T-ENA shows changes along the
temporal dimension, which would otherwise be lost when
aggregating data (Tan et al., 2022). Modeling trust dynamics
using T-ENA can represent both the multidimensional and
temporal aspects of trust.
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2.5. Research objectives

This study investigated trust dynamics in human-agent con-
versations by addressing two research questions: (1) how do
humans indicate different trust levels in human-agent con-
versations? (2) how does human-agent trust conversation
change over time? We adopted a novel approach, trajectory
epistemic network analysis that can capture the contextual
and dynamic nature of trust in HATs. To address the first
question, we used ENA to depict the multidimensional
structure of trust. To address the second question, we used
T-ENA to show the evolution of trust. We adopted long-
duration space exploration operations as a context to study
trust dynamics. As the National Aeronautics and Space
Administration (NASA) moves from moon missions to
Mars missions, the longer communication delays lead to an
increasing need for cooperation between humans and virtual
agents, which requires a close examination of trust
dynamics.

3. Method
3.1. Study design

We analyzed data from a 2 x 2 x 3 within-subject study (see
Figure 1). Participants completed 12 decision-making tasks
where they managed a Carbon Dioxide Removal System
(CDRS) that is part of an analog Mars habitat. Because trust
changes as a dynamic process that varies across interactions
(Yang et al,, 2021), we designed repeated exposures with the
automated system to ensure we captured multiple measures
of trust. Participants were assisted by a conversational agent
with two levels of agent reliability (i.e., high, and low). Each
level of reliability had two cycles of the CDRS tasks, each
including three events (i.e., startup, venting, shutdown). The
high-reliability conversational agent provided 100% correct
recommendations whereas the low-reliability agent provided
20% correct recommendations. The 12 events were designed

automation domain, which includes a variety of items sam-
pling trust and distrust (Kohn et al., 2021).

3.2. Participants

A total of 24 participants (18 female, 6 male) were recruited
from the Madison, WI area (M =23.7, SD =3.6). Due to the
safety concerns of COVID-19, the study took place online.
It was a 2-day study with each day’s participation lasting up
to 2h. In total, the study was approximately 4 h. Participants
received $30 per hour for a total of up to $120. This
research complied with the American Psychological
Association Code of Ethics and was approved by the
Institutional Review Board at the University of Wisconsin—
Madison. In total, each participant had the opportunity for
72 conversational turns with the agent. The cleaned text
data contained 1981 lines of utterances, with a mean text
length of 38.25 characters (SD=26.49). A t-test showed that
the mean trust score for the high-reliability condition
(M=5.78, SD=10.86) was significantly higher than the low-
reliability condition (M=4.37, SD=1.44), t(23) = 4.12,
p=0.0002. Thus, we can investigate the conversational indi-
cators associated with high-trust and low-trust situations.

3.3. Apparatus

The experimental task used the Procedure Integrated
Development Environment (PRIDE) which is an automated
procedure software, to maintain the space station habitat
using the Carbon Dioxide Removal System (CDRS)
(Schreckenghost et al., 2014). A conversational agent, named
Bucky, was preprogrammed with procedure protocols to
provide recommendations to help participants follow the
PRIDE procedures to maintain the habitat. Google Dialog-
flow, a Natural Language Understanding (NLU) platform

Table 1. Examples of conversational trust questions.

) ) Number Question
to elicit various levels of trust through dlffermg agent reli- 1 How would you describe your experience selecting the procedure?
ability. At the end of each event, the agent initiated a con- 2 Why would you feel that? Can you explain your answer in more

. . . . detail?
versation by as.kl.ng six tr}lst related quest10n§ (see Table 1). Can you talk more about my performance in providing the
Once the participant finished the conversation, they then recommendation?
completed a 12-item Checklist for Trust between People and g zhat makes”sense. Whidt\) procedure did yOlfJ Seleclz? \

. . . . t t trat icking that
Automation on a 7-point Likert scale (Jian et al., 2000). An ar;)r)g)clédjre?  MOre about your strategy for piciang tha
example item is “The system is reliable.” This survey is the 6 How can | be more helpful in terms of providing
most frequently used and cited survey in trust in the recommendations?

High Reliability Low Reliability
Cycle 1 Cycle 2 Cycle 1 Cycle 2
startup  venting shutdown startup  venting shutdown startup  venting shutdown startup  venting shutdown
60 mins 30 mins 30 mins 30 mins 30 mins 10 mins
Day 1 Day 2

Figure 1. The study design with two levels of reliability conditions.



was used to design and integrate the user interface.
Participants were asked to directly speak to the conversa-
tional agent using their computer’s microphone. Keyboard
and button inputs were also provided. Text data was auto-
matically transcribed using speech-to-text technology. Both
audio and text data were collected.

3.4. Procedure

After signing the consent form, participants completed
training on PRIDE, CDRS, and Bucky systems. During the
study, participants had 25 minutes to completely control all
three CDRS events (startup, venting, and shutdown) before
their crew experienced CO, poisoning. For each event, the
participant made two essential decisions with Bucky’s aid
(i.e,, procedure recommendation and verification sugges-
tion). Bucky would provide a recommended procedure of
CDRS and participants could either accept Bucky’s recom-
mendation or reject it and manually select an alternate pro-
cedure. Once the procedure was selected, PRIDE automated
the procedure execution. After the procedure finished run-
ning, Bucky verified the system status and made suggestions
on whether participants should rerun the procedure. Again,
participants could decide to accept or reject the suggestion.
Once the participant finished the event, Bucky initiated a
conversation with six questions with some variations to
avoid being repetitive (see Table 1). After conversational
questions, participants completed the trust questionnaire.
The total time of each cycle, including the trust conversation
and questionnaire, was approximately 40 min. At the end of
the study, participants were debriefed and compensated.

3.5. Trajectory epistemic network analysis

For trajectory epistemic network analysis (T-ENA), we
adopted a four-step process as shown in Figure 2: (1) data
segmentation, (2) directed content analysis, (3) network ana-
lysis, and (4) trajectory analysis.

3.5.1. Data segmentation

Conversation data between participants and the conversa-
tional agent were recorded in log files, which were seg-
mented based on the conversational turn. Four types of
meta-data were used for data segmentation: (1) Reliability
condition that participants experienced. This is used as the
grouping variable for comparison between two conditions.
(2) Participant ID, which is used as a ‘unit’ in the ENA. (3)
Question ID, which defines as ‘conversation’ for ENA.

Vin

O ~0
O
(?.\"\

Data collection Data segmentation

l l

Capture trust conversations Segment trust utterances

Code trust constructs
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Conversations are collections of turns within which ENA
models connections between concepts. (4) Codes, which are
generated by the directed content analysis (described in sec-
tion 3.5.2).

3.5.2. Directed content analysis

Trust dynamics models (Yang et al., 2021) were used to
identify the six codes shown in Table 1, which include four
codes related to the analytical processes of trust and two
codes related to the affective processes of trust. For analyt-
ical processes of trust, codes were identified in an iterative
round of coding. Two researchers combined deductive and
inductive coding to refine and validate codes. For affective
processes of trust, we adopted the circumplex model of
affect (Russell, 1980), which suggests that affect is described
in a two-dimensional circular space, containing arousal and
valence dimensions. We excluded two quadrants in the
valence-arousal affect model: positive valence, high arousal
(e.g., excited), and negative valence, low arousal (e.g., sad)
since these did not appear in the conversational data.

The directed content analysis identified trust components
within the participants’ conversations with the virtual agent
throughout the task. Two researchers coded each turn using
a binary coding structure: “1” if the code exists, or “0” if the
code does not exist per each segment. Coders compared
codes and categories and re-coded certain segments to
resolve disagreements and achieve consensus on final binary
codes for each turn in every transcript. Table 2 shows the
final codebook used for the ENA analysis.

3.5.3. Network analysis

Based on the codebook from Directed Content Analysis, each
segment of coded data is represented as a vector of six 1 or
0's representing the presence or absence of each code. These
vectors define the nodes of networks and the cooccurrence
of codes in a conversational context defines the links
between nodes. The ENA algorithm uses a moving window
to define the conversational context for each conversational
turn in the data, showing how codes in the current turn are
connected to codes that occur within the recent temporal
context. Here we defined this context as 12 turns (each turn
plus the 11 previous turns) within a given conversation.
Codes that occurred outside of this window were not con-
sidered connected. The size of the moving window is
defined by the number of questions after each decision-
making point in the experiment (i.e., six questions with
answers for each question, 6x2=12). Then, the co-
occurrence of codes is converted into adjacency matrices

® ok

Direct content analysis

Network analysis Trajectory analysis

, l l

Model trust dimensions Model trust dynamics

Figure 2. Trajectory epistemic network analysis process and for assessing trust dimensions and dynamics.
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Table 2. Codebook of trust-related constructs included in the Epistemic Network Analysis.

Code

Definition

Example from data

System capability

System error
User capability

System process scrutiny

Participants commented on Bucky’s past and/or current
performance and ability to provide the appropriate
recommendation for the task.

Participants commented on errors in Bucky’s
recommendations.

Participants commented on their self-efficacy and their
belief in his or her capacity to execute the task.

Participants recalled the specific system knowledge to
understand or clarify how the system operates.

| think your performance was good since it worked out
well.

The procedures didn't line up to what I thought the right
procedure would be.

Bucky is incorrect this round, but I'm confident in myself
for choosing the correct one.

It was the only option in which the EPS was powered up
before the ATCS was activated. If the EPS is not

Positive valence, low arousal

Negative valence, high arousal

Participants expressed their affect that is positive and
low aroused, such as calm, contented, and relaxed.

Participants expressed their affect that is negative and

powered up, then the ATCS

can’t be activated, therefore | assumed this was the only
procedure that would be effective.

| feel like I've reached a routine with my method of
choosing the procedure. So, | enter the same state of
calm.

| get even more confused with Bucky’s recommendation

highly aroused, such as confused, frustrated, stressed,

nervous, and annoyed.

and summed across the moving window into a cumulative
adjacency matrix. Each matrix is then converted into an
adjacency vector by copying the cells from the upper diag-
onal of the matrix row by row into a single vector. Next,
ENA is normalized using spherical normalization by divid-
ing each vector by its length, representing frequencies of
co-occurrence code pairs. Once data is normalized, ENA
performs a singular value decomposition (SVD) using two
SVD dimensions. The resulting network is then visualized
by locating the network nodes using an algorithm that mini-
mizes the projection of the point under SVD and the cen-
troid of the network graph under the node positioning
being tested. The optimization allows the structure of the
ENA space to account for the most variance between differ-
ent networks. Links are then constructed between the posi-
tioned network nodes according to the adjacency matrix.

For the resulting network, nodes correspond to codes;
edges correspond to the co-occurrence between each pair of
codes and the thickness of the edges shows the strength of
the connection between nodes defined by the relative fre-
quency of co-occurrence. The centroids are the mean values
based on node position weighted by each edge weight in the
networks. To compare the trust indicators in the conversa-
tion, the network was grouped based on the two reliability
conditions of the conversational agent. To determine if the
high-reliability conditions are statistically different from the
low-reliability conditions, we conducted t-tests on the
network centroids.

3.5.4. Trajectory analysis

We used the R package trajectoryENA (Brohinsky et al.,
2021) to create trajectories. We coded the conversations
with 12 time segments, which is each conversation after
each event (startup, venting, shutdown). Thus, each reliabil-
ity group had six-time segments. The mean for each time
segment was projected in the aggregated ENA space
described above. Group means were plotted and sequentially
connected, which produce curves between successive time
points. Adding the time unit to the ENA allows us to

investigate how people’s trust evolves from the beginning to
the end, which the aggregated ENA analysis ignores.

4. Results
4.1. Epistemic network analysis

The graphs summarizing the Epistemic Network Analysis
(ENA) contain: (1) plotted points, which represent the loca-
tion of that unit’s network in the low-dimensional projected
space, and (2) weighted edges connecting these points. The
positions of the network graph nodes are determined by
minimizing the difference between the plotted points and
their corresponding network centroids. This co-registration
of network graphs and projected space, the positions of the
network graph nodes, can describe the dimensions of the
projected space. Our model had co-registration correlations
of 0.98 (Pearson) and 0.98 (Spearman) for the first dimen-
sion and co-registration correlations of 0.92 (Pearson) and
0.90 (Spearman) for the second. These measures indicate
that there is a strong fit between the visualization and the
model.

Figure 3 shows the network for high and low reliability.
In these network graphs, nodes correspond to the codes
identified that are relevant to trust indicators in the conver-
sations, and edges reflect the relative frequency of co-
occurrence of these codes within each conversation between
participants and the conversational agent. Thus, the thicker
the edges, the more frequent the co-occurrence and the
stronger the node connection in the human-agent conversa-
tion. Figure 4 shows subtracted network graphs, which sub-
tract the high and low-reliability networks nodes and
connections from each other to create a different network
graph. The resulting network provides the visual representa-
tion to show the difference between node connections and
edge width in high and low-reliability conditions. The cent-
roids in Figure 4 summarize the dimensions of each net-
work. Centroids, indicated by square points and confidence
intervals (dotted lines), enable comparisons of networks stat-
istically as well as visually.
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Figure 4. ENA network of subtracted connections for high reliability (blue) versus low reliability (red). The points represent coded topics, and the edges represent
the co-occurrence of the topics. The thicker the edges, the more frequently the topics co-occur in the human-agent conversation. The square points and associated

error bars represent the centroids and the confidence interval of the network.

To test the differences between the reliability conditions,
we applied a two-sample t-test on the distribution of the
centroids of each group. Along the x-axis, a two-sample
t-test showed that the high-reliability condition (M =
—1.15,SD = 0.55, N = 22) was statistically significantly dif-
ferent at the o= 0.05 level from low-reliability condition
(M=1.33, SD=0.50, N=19); #(38.88) =15.18, p<0.001,
Cohen’sd=4.72. Along the y-axis, the two-sample ¢-test
assuming showed high-reliability condition (M = 0.00,SD =
0.82,N = 22) was not statistically significantly different at
the o=0.05 level from the low-reliability condition
(M=0.00, SD=045, N=19); #(34.45)=0.00, p=1.00,
Cohen’sd = 0.

The x-axis and y-axis of the ENA network should be
interpreted based on the code placement and researchers’
domain knowledge. Nodes at the extreme edges of the space
provide more information for labeling the axis. The codes
that capture the degree of analytic processes of trust define

the x-axis. These codes include system capability, system
errors, system process scrutiny, and user capability. Moving
from left to right along the x-axis indicates conversation
topics shift from positive aspects of system capability to
negative aspects, such as system errors. Codes that reflect the
affective processes of trust in the system, which include the
high/low arousal and positive/negative valence of affect
define the y-axis. The significant result on the x-axis in
Figure 4 indicates that the conversation between high-
reliability versus low-reliability conditions differed along the
analytical level conversation codes. In the high-reliability
condition, the conversation is centered around the system
performance (e.g., The performance is good). In the low-reli-
ability condition, the conversation was more centered on the
errors that occurred in the system and its connections with
the system scrutiny (e.g., The CO, level should be lower).
Based on Figure 4, in the high-reliability condition, the
strongest connection is System Capability and Low Arousal,



8 M. LI ET AL.

Positive Valence, indicating that when the conversational
agent is performing well, people usually commented on the
system performance along with positive valence and low
arousal affect words, such as “calm” and “relax”.
Additionally, the connection between System Capability and
User Capability indicates that people often reflected on their
self-efficacy and talked about their capability when the sys-
tem performs well. In the low-reliability condition, between
the affective and analytical processes of trust, we noticed a
strong connection between System Error, High Arousal, and
Negative Valence. This means that low performance
and lower levels of trust were associated with high arousal
and negative valence words (e.g., annoyed). Additionally,
there is a strong connection between System error and
System Process Scrutiny. This suggests that in the low-
reliability condition, people expressed their low level of trust
by thinking aloud about the specific system processes, such
as reflecting on what states CDRS should have been in cer-
tain situations (i.e., System Process Scrutiny).

4.2. Trajectory ENA
Figure 5 shows the trajectory model for the high- and low-reli-

ability conditions across 12 interactions. Every point on the

a. Trajectory on y-dimension

graph shows the mean for each time segment, which is each
conversation after each event (a total of 12 conversations). A
total of three time-series ENA trajectories were plotted: one
with two-dimensional ENA showing both affective and ana-
Iytic processes (Figure 5(a, c)) and two one-dimensional
ENA with each process along with the time (Figure 5(b)). To
interpret the trajectory, three crucial variables need to be
disentangled: changes in the x-dimension, changes in the
y-dimension, and progression in time. The subplots were co-
registered with the main plot, thus the comparison between
plots also allowed changes in the subplots to be interpreted
with the dimensions of the main ENA space.

Figure 5(a) tracks changes in the y-dimension (affective
process) of the original ENA space over time (time as the
x-axis). This shows the evolution of trust in changes in
affective trust over interactions. The variation across the y-
dimension indicates a mixed and continuous emotion
related to trust shown in the conversation. For example, the
subject commented: “Since this is the first time Bucky’s been
incorrect, it confused me for a little bit and made me second-
guess myself just because Bucky’s been so accurate.”

Figure 5(c) tracks changes in the x-dimension (analytical
process) of the original ENA space over time (time as
y-axis). This shows the analytic process of trust as a function

b. Trajectory on two dimensions

‘ ; Low A, Pos V
User Capabihly] System Error
= —

. - \ o ] /’ﬂ Group
= o \ B 5 2 System Process Scrutiny / e High
$ X [} /

b= y \ = 4 8 14/ 7 o Low

. [
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High A, Neg V
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c. Trajectory on x-dimension

0
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Figure 5. Trajectory ENA. Figure (a) shows the affective process of trust changes in the y-dimension as a function of time. Figure (b) shows the two-dimensional tra-
jectory mapping onto the network result. Figure (c) shows the analytic process of trust changes in x-dimension as a function of t time. The increasing transparency

indicates the increasing time throughout the interaction.



of time. Compared to the affective process of trust, which is
more continuous and non-significant between high and low-
reliability groups, the analytic processes showed a distinct
pattern difference. This suggested that the analytical process
of trust follows a swift transition.

Figure 5(b) maps the two-dimensional trajectory on top of
the ENA node positions, which shows trust dynamics on both
the multidimensional and temporal aspects of trust. The anno-
tated numbers correspond to the centroid of the topics over
twelve decision-making interactions. The direction of the tra-
jectory indicates the changes and convergence of topics over
time. When people have high trust in an agent, they attribute
their capability with positive sentiment and later confirm the
system’s capability. When people interact with low-reliability
agents with low trust, conversations note the system error and
then converge towards checking the system process with a
large variance in the affective processes. Additionally, we
noted a distinct difference in the topic variance of the trajec-
tory between high and low-reliability groups. The variance of
the trajectory suggests the diversity of the conversational
topics. The low-reliability group shows a wider range on both
the x and y dimensions, indicating higher volatility when peo-
ple express a low level of trust. This shows that people have
mixed emotions (affective) and analytical judgment when
interacting with a poorly performing agent. In sum, our T-
ENA results show that trust changes as a function of time, and
the prominence of analytical and affective dimensions changes
over time.

To Dbetter understand trust dynamics and evolution in
HATSs, we applied a novel approach, trajectory epistemic
network analysis (T-ENA), to twenty-four human-agent con-
versations. Specifically, we explored the multidimensional
aspect of trust using ENA and temporal change of trust
using the trajectory analysis of ENA. For the trust dimen-
sions, the ENA plots provided meaningful connections
between analytic and affect processes of trust concerning
agent reliability. For trust dynamics, the temporal analysis
segmented the change of trust throughout the courses of the
human-agent interactions and mapped it with analytic and
affective dimensions of trust.

4.3. ENA showed an interplay between analytic and
affective processes of trust

A significant difference between high and low-reliability con-
versations was shown in the x-axis, which is interpreted and
labeled as an analytic process of trust. Results suggest that
people express different trust states by using distinct analytic
information, such as commenting on system performance
and noticing errors. This is expected since we manipulated
the reliability of the conversational agent, which maps to the
analytic process. No significant difference was found in the
affective process. This suggested that the manipulation of reli-
ability showed less influence on the affective process, which
aligns with prior literature that the affective process has a
greater influence on the analytic process than the analytic has
on the affective (Lee & See, 2004). Especially in low risks and
self-relevant decisions, the effect of the affective process on
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trust is much weaker (Midden & Huijts, 2009). In our case,
the simulated CO, removal procedure did not affect the par-
ticipants’ physical environment, thus the physical and psy-
chological distances to the potential hazards were far.
Participants experienced a low level of risk and low self-rele-
vance, which would induce less changes in the affective pro-
cess of trust.

The network analysis also revealed interactions between
analytic and affect processes of trust under the influence of
automation reliability. When people show high trust in con-
versational agents, on the affective dimension of trust, there is
a stronger connection between low arousal and positive
valence affect with the system and wuser capability.
Complementing our prior paper using machine learning mod-
els which showed that positive sentiment predicts trust (Li
et al, 2022), ENA results provided more context-relevant
information: the positive sentiment is associated with the sys-
tem capability and users’ capability. In the low capability, peo-
ple indicate high arousal and negative valence and discuss
system errors with a detailed inspection of the system process.
For the future design of the conversational agent, when people
have lower levels of trust, the agent should provide more
details on system processes to support the cognitive processes.

Additionally, the different links of conversational topics
between high and low reliability conditions have been
observed: a stronger connection with user capability in the
high condition whereas a stronger connection with system
process in the low reliability condition. These results show
people’s self-serving attribution bias since people often credit
positive events internally with their capability and attribute
negative events externally by scrutinizing the system proc-
esses and errors (Miller & Ross, 1975). A prior study showed
when a robot gave people credit, people would trust the robot
more (Kaniarasu & Steinfeld, 2014; You et al., 2011). Our
study provided the potential for using people’s self-serving
bias and blame attribution when designing agents’ communi-
cation strategies. People might be more likely to accept and
trust the virtual agent if the agent credits users’ capability
when the joint task went well and accepts blame if the joint
performance was poor. Future empirical studies can further
validate the hypotheses and show the effects on trust
processes.

4.4. ENA trajectory showed temporal dynamics of trust

For the temporal aspect of trust dynamics, T-ENA showed
the temporal change of trust throughout human-agent inter-
actions by mapping the temporal changes in trust to the
analytic and affective dimensions of trust. Kaplan and col-
leagues hypothesized a dynamic mode of trust where trust,
at each measurement point, is based on a triangle form of
three antecedents (human, robot, contextual)(Kaplan et al.,
2021). Our T-ENA results are the first empirical validation
of Kaplan’s dynamic model and show the relationships
between trust antecedents and time. We showed that trust at
each measurement can show different processes of trust in
an evolving relationship. We observed clear differences in
conversation trajectory on affective and analytic dimensions.
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For the affective dimension of trust, people show mixed and
continuous emotions related to trust shown in the conversa-
tion. For the analytic dimension of trust, a distinct differ-
ence was observed in the conversation. This implied that
using analytic information to estimate people’s trust transi-
tions can be more effective in human-agent conversation.

The variance and direction of the conversational trajectory
on the two-dimensional trust dynamics also suggested the
differences in conversational topic diversity and flow. When
people have high trust in the agent, people’s conversation
topics are more consistent and converged to the system’s cap-
ability. When in a low trust state, conversational topics are
more scattered. One potential explanation is that the scat-
tered conversational topics reflect heavier cognitive process-
ing because topic shifts would cause unexpectedness for
people to process the connections between topics (Dessalles,
2017). Our results on human-agent conversations in various
trust states shed light on their cognitive processes. Compared
to high trust, which leads to a familiar congruent flow of cog-
nitive processing (thus consistent conversational topics), low
trust or distrust triggers a spontaneous activation of alterna-
tives and incongruent associations, which can be shown as a
diverse topic or verbose examination of the system (Mayo,
2015). These results implied the cognitive mechanism of epi-
stemic vigilance in human-Al conversation. Epistemic vigi-
lance refers to a processing cost to be minimized when the
information communicated is of no relevance to oneself
(Sperber et al., 2010). Trust is buttressed by epistemic vigi-
lance: during the trust calibration process, in the high trust
state, people are less vigilant and minimize the processing
cost, which manifested as a consistent topic trajectory; in the
low trust state, a higher epistemic vigilance, thus, it leads to
a heavier processing cost, which manifested as a more com-
plex conversational topic and structure. Prior research has
studied the relationship between trust and vigilance in the
detection performance of automation monitoring (Molloy &
Parasuraman, 1996). Future research is needed to further val-
idate the influence of trust and epistemic vigilance on human-
Al conversation.

4.5. Trust-calibrated conversational agent design

With the proliferation of intelligent conversational agents
(e.g., Siri, Amazon Alexa, ChatGPT), designing trustworthy
conversational agents becomes more important because it is
the foundation for both social (interactional) and transac-
tional (task-based) conversations (Clark et al., 2019; Rheu
et al,, 2021). While currently most conversational agents are
designed to be exclusively task-oriented and transactional,
more research has focused on long-term and multiple-turn
agents to not only fulfill service requests but also address
social needs (Clark et al., 2019). Trust dynamics become
increasingly important since it is core to achieving common
ground for long-term relationship building. In this study, we
investigated trust dynamics in human-agent conversation and
provided design applications for the conversational agent: an
adaptive conversational strategy should be adopted to better
manage people’s trust in various states. The conversation can

be designed using the principle of conversational entrain-
ment. Entrainment refers to the phenomenon where commu-
nication partners synchronize their behaviors, which can
promote productive conversation and enhance cooperation
by supporting predictive processes and reducing cognitive
processing Manson et al., 2013). Specifically, our results
imply when users are in high-trust, the conversational agent
can provide minimal input with validation for the system
performance; when in a low trust state, the conversational
agent should proactively provide more analytic information
regarding the system process to reduce cognitive processes.
Additionally, implementing acoustic-prosodic entertainment
(e.g., speech rate, pitch properties) in the conversational agent
can be beneficial to manage trust in human-AI conversation
(Li et al., 2022). The question that remains is how to mitigate
users’ over- and under-trust using conversational cues.
Future research should focus on designing conversational
strategies for adaptive trust calibration.

4.6. ENA trajectory for human-computer interaction
(HCI) research

In this paper, we demonstrated that the T-ENA method can
be used to model trust dimensions and dynamics in human-
agent conversations: ENA provides qualitative meaning to
structured networks with statistical tests and trajectory ana-
lysis can further analyze the temporal changes. Our results
provide empirical evidence for future HCI research topics.
Prior research has shown promise for understanding indi-
vidual contributions versus team interactions in human-
human conversations (Siebert-Evenstone et al., 2017). Future
studies can apply T-ENA to understand the structures of
human-AI teams.

Application of ENA is not limited to conversational data.
Because of ENA’s characteristics of quantifying meaningful
connections among elements, researchers have analyzed social
gaze coordination using eye-tracking data in a joint task
(Andrist et al., 2015), identified areas of co-activated brain
areas using fMRI data (Collier, 2015), and visualized people’s
spatial movements in clinical team simulations (Fernandez-
Nieto et al., 2021). Essentially, ENA makes it possible to treat
qualitative data quantitatively to extract insights that might
otherwise be lost with a purely qualitative approach.

4.7. Limitations and future studies

It is important to note several limitations in our study to
better generalize the findings. First, the human-agent con-
versation has a pre-defined decision-tree structure due to
the limits of the state-of-art conversational agent capabilities.
On the one hand, we were able to compare the difference in
answers systematically across the interactions. However,
compared to the human-human conversation, the conversa-
tions can appear to be limited in terms of the potential
topics discussed. Thus, the coverage of the topics can be less
diverse than human-human conversation, which cannot pro-
vide rich information for coupled conversational analysis.
Future studies using a more robust conversational agent can



generate more dynamic conversations and trust-related find-
ings. Second, since conversations are heavily contextual, the
conversation in our study is domain focused. For example,
for the node of System Process Scrutiny, people used jargon
related to our study design, such as the carbon dioxide
removal system. Thus, when generalizing findings from our
study to another domain, the coding for the nodes in the
network should be adjusted to the context. Additionally,
researchers should consider whether the task situations and
relationship between humans and agents can be generalized.
Our study manipulated the reliability conditions of the
agent, and the task was safety-critical with heavy cognitive
loads. Future studies should also consider social and non-
critical conversations between humans and AL

5. Conclusion

To support human-Al teaming, the AI needs to monitor
and manage trust dynamics in real time. Conversational
data provides a novel approach to measuring, modeling, and
managing trust. Prior approaches using quantitative analysis
(e.g., machine learning, text analysis) or qualitative analysis
(e.g., grounded theory) cannot provide deep connections
between the trust indicators. We employed trajectory epi-
stemic network analysis, a quantitative ethnographic
approach that identifies time-series patterns in the data
while providing interpretable construct connections, using
human-agent conversational data. ENA mapped the multidi-
mensional aspect of trust and showed that reliability affected
the analytic process of trust. People scrutinized system proc-
esses and misaligned information when they were in a low-
trust state. T-ENA showed the temporal dynamics of trust
throughout human-agent interaction. Results showed a dis-
tinct difference in conversational topic diversity and flow
over time, which suggested that the agent’s conversational
strategy should be adaptive based on people’s trust states.
Our study enhanced the understanding of trust dimensions
and dynamics in human-AI conversation and teaming.
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