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Abstract

When people experience the same automation, their trust in automation can diverge. Prior research has used individual
differences—trust propensity and complacency—to explain this divergence. We argue that bifurcation as an outcome of a
dynamic system better explains trust divergence. Linear mixed-effect models were used to identify features to predict trust
(i.e., individual differences, automation reliability, and exposure). Individual differences associated with trust propensity and
complacency increases the R? of the baseline model by 0.01, from R? = 0.40 to 0.41. Furthermore, the Best Linear Unbiased
Predictors (BLUPS) for random effect of participants were uncorrelated with trust propensity and complacency. In contrast,
modeling trust divergence from a dynamic perspective, which considers the interaction between reliability and exposure
along with the individual by-reliability variability fit the data well (R? = 0.84). These results suggest dynamic interaction with

automation produce trust divergence and design should focus on state dependence and responsivity.

Keywords

Trust in automation, Dynamic system, Individual difference, Trust dynamics

Introduction

As intelligent agents become increasingly autonomous on
progressively more complex tasks, trust becomes more
essential to designing effective human-automation coopera-
tion (Chiou & Lee, 2021). Trust, defined as “the attitude that
an agent will help achieve an individual’s goals in a situation
characterized by uncertainty and vulnerability” (Lee & See,
2004, p. 54), is crucial for ensuring appropriate reliance on
automation and avoiding its misuse, disuse, or abuse
(Parasuraman, 1997). Often, people’s trust in automation
often evolves and converges to a relatively homogeneous
level of trust. However, trust can also diverge. Interacting
with the same automation, some people might develop high
levels of trust whereas others might grow to distrust it
(Kamaraj et al., 2023; Liu et al., 2021). This divergent trust
is an interesting form of trust miscalibration because it
describes how some people might over-trust and others
might under-trust the same automation.

It might be useful to consider trust divergence as qualita-
tive changes or ‘bifurcation’ in how people experience and
trust automation. Bifurcation, well-studied in dynamical sys-
tems, describes how a small initial change of a system made
to the parameter values, known as bifurcation parameters,
can cause a sudden topological change in its behavior. In the
context of trust in automation, this small initial change is
often considered as differences in initial trust and individual

differences, as well as variance in their initial perception and
interaction with the automation. The bifurcation parameter
refers to the changes in automation characteristics, such as
an error. Previous research has highlighted various reactions
following automation failures, including disbelievers,
Bayesian decision-makers, and oscillators (Bhat et al., 2022).
While researchers often rely on individual differences to
explain diverse group behaviors. Yet, focusing solely on
individual behaviors neglects the temporal aspect of how ini-
tial individual differences compound with the subsequent
experiences of automation characteristics, especially when
encountering the ‘bifurcation parameter’ (e.g., automation
errors). The underlying mechanism contributing to the stabi-
lized and diverging trust has received little attention and
merits investigation. Three factors, namely individual differ-
ences, automation characteristics, and trust dynamics, may
account for the trust bifurcation. In this paper, we argue that
adopting the concept of bifurcation as an outcome of a
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dynamic system offers a more suitable framework for
explaining trust divergence.

Individual Differences

The wide range of individual differences, encompassing
backgrounds, personalities, and knowledge of automation,
contributes to the variability in individuals' propensity to trust
automation. Those with a higher inclination to trust may
experience a greater decline in trust when interacting with
low-performing automation (Merritt & Ilgen, 2008).
Moreover, individuals who with a stronger "perfect automa-
tion schema" demonstrated greater declines in trust when
they encountered automation errors (Dzindolet et al., 2002).
Additionally, individuals also vary in automation-induced
complacency, which can manifest as either a failure to detect
or an delayed response to detecting errors (Bailey & Scerbo,
2007; Merritt et al., 2019). Prior research has found that com-
placency interacts with automation characteristics: the higher
the system reliability, the more likely the operators become
complacent (Parasuraman et al., 1993). Minor differences in
individuals can influence the initial level of trust and subse-
quently shape the interpretation of new information. Thus,
individual differences can influence trust divergence.

Hypothesis 1. Individual differences predict diverging of
trust in automation.

Automation Reliability and Exposure

Because trust calibration is the correspondence between a
person’s trust in automation and the automation’s capabili-
ties, it has been consistently shown that automation capabil-
ity significantly influences trust in automation (Dzindolet
et al., 2002). Automation failures often have a much stronger
influence on trust than automation successes: trust is difficult
to build but can be lost quickly (Dzindolet et al., 2003;
Manzey et al., 2012). Trust is continuous process influenced
by the trust of a previous moment (Yang et al., 2023).
Exposure to automation reflects the extent to which individ-
uals have encountered and interacted with automated sys-
tems. Repeated exposures can have both positive and
negative effects on individuals’ behaviors and trust in auto-
mation. On one hand, repeated exposure can increase famil-
iarity, indirectly influencing trust (Mayer et al., 1995). On
the other hand, repeated exposures, especially with highly
reliable automation, can induce complacency and decreased
situational awareness, resulting in over-reliance on automa-
tion and over-react to automation errors (Dzindolet et al.,
2002). Thus, the automation capability and exposure to auto-
mation can be potential causes of the diverging levels of trust
and motivate the second hypothesis.

Hypothesis 2: Automation reliability and exposure predict
diverging of trust in automation.

Trust Dynamics

Trust is inherently dynamic. People calibrate their trust over
time as a continuous cognitive process (Gao & Lee, 2006).
While researchers have highlighted the continuous and tem-
poral elements of trust dynamics (Yang et al., 2023), limited
past research has used trust dynamics to explain people’s
divergent opinions on automation. Using trust dynamics,
trust divergence can be modeled as a bifurcation in a dynamic
system: a small change in the initial state gradually influ-
ences behavioral framing and subsequent decision-making
processes. This bifurcation results in trust stabilizing as two
distinct trajectories. For example, in supervisory control, the
individual differences shape the decision between manual
control and automation. Once either decision is selected, it
would provide positive or negative experiences. The experi-
ences create inertia to keep people only focusing on either
the advantages or disadvantages. Automation failures can be
bifurcation transient point, which leads to trust divergence
and long-term maintenance in certain states. Thus, the struc-
tural changes of the bifurcation depend on the combination
of individual differences, the automation performance and
the exposure, and their interaction over time, rather than on
any individual factor alone.

Hypothesis 3: Trust is a dynamic system. People's varying
responses to the interaction of automation characteristics
and exposure predict diverging of trust in automation.

Method

The study was a 2 (reliability) X 2 (cycles) X 3 (events)
within-subject study. Participants performed 12 decision-
making tasks associated with managing a system of a simu-
lated space station: the Habitat’s Carbon Dioxide Removal
System (CDRS). Participants were assisted by a conversa-
tional agent (Bucky) with 2 levels of reliability (i.e., high,
and low). Each level of reliability had 2 repeated cycles of
the CDRS tasks, each including 3 events (i.e., startup, vent-
ing, shutdown). Details of the study were documented in (Li
etal., 2022).

Participants

A total of 24 participants (18 female, 6 male) were recruited
(M = 237, SD = 3.6). Recruitment inclusion criteria
included that participants should be comfortable using a
computer and a touch screen interface as well as have some
technical background (e.g., completion of engineering or sci-
ence courses). Due to the safety concerns of COVID-19, the
study took place online. It was a two-session, two-day study
with each session lasting up to two hours. In total, the study
lasted approximately four hours for each participant.
Participants received $30 per hour for up to $120 for four
hours of participation.
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Procedures

After signing the consent form, participants completed a
two-part training: the first provided a study overview and
training on the CDRS system, while the second included an
interactive demonstration of working with Bucky on deci-
sion-making in PRIDE. During the study, participants had 25
minutes to use the CDRS system to remove CO, from
Habitat’s environment by running the CDRS through three
events (startup, venting, and shutdown) before their crew
experienced CO, poisoning. For each event, the participant
made two essential decisions with Bucky’s aid. The first
was selecting a procedure to run to remove the CO,. Bucky
recommended a procedure. The participant could either
accept Bucky’s recommendation or reject it and choose a
different procedure. The second decision was deciding
whether to rerun the procedure selected. As part of this
decision participants would be advised by Bucky if the state
of the CDRS was incorrect and if a different procedure
should be run. The participants could either accept Bucky’s
recommendation or reject Bucky’s recommendation and
run a different procedure. The participants made their deci-
sions either based on their knowledge from their training
session or by relying on Bucky’s recommendation. Once
the procedure was selected, PRIDE automated the proce-
dure execution. If the participant selected the incorrect pro-
cedure, an error occurred. The participant then had to
manually stop the procedure and reselect a procedure. The
participant finished the event by confirming the procedure
ran correctly and completed the trust ratings.

Data Analysis

Linear mixed effect models identified features predicting
trust as measured by the 12-item, 7-point Likert scale (Jian
et al., 2000). To test our hypotheses regarding how indi-
vidual differences, automation characteristics, and dynam-
ics explain trust, we gather relevant features for each
hypothesis.

For individual differences, we measured people’s automa-
tion complacency and propensity to trust. We adopted the
Automation-Induced Complacency Potential-Revised scale
(AICP-R) (Merritt et al., 2019), which is a 10-item with
response options on a five-point Likert scale ranging from 1
(strongly agree) to 5 (strongly disagree). Example items
include, “Constantly monitoring an automation is a waste of
time.” For propensity to trust, we measured people’s general
tendency to trust automation using the Propensity to Trust
Machines questionnaire (Merritt, 2011). This scale consists
of six items with response options ranging from 1 (strongly
disagree) to 5 (strongly agree). Example items include, “I
usually trust machines until there is a reason not to.”

Automation characteristics were modeled as reliability con-
dition and exposure. Reliability is a binary indicator of agent
performance. Exposure is defined as the number of times

Table I. Mean Trust Values between Reliability and Exposure.

Reliability Exposure M(SD) Cl

High | 5.52 (.19) [5.14, 5.90]
2 5.77 (.18) [5.39, 6.14]

Low | 4.42 (.25) [3.90, 4.94]
2 3.86 (.27) [3.31,4.41]

participants experience the same automation characteristics,
which is the number of cycles participants experienced.

For the trust dynamics hypothesis, we considered the
interaction of automation characteristic and exposure along
with individuals’ varying responses to the experiences.

Results

The mean trust score for the high-reliability condition was
5.78 (SD = 0.86) whereas, for the low condition, the mean
trust score was 4.37 (SD = 1.44). The difference in mean
trust values across reliability and exposure were shown in
Table 1. From Figure 1 we observed that the path taken by
individuals throughout the experiment was highly variable:
some maintained a steady level of trust throughout the exper-
iment, while others had dramatic drops in trust. The black
lines represent six participants: three with the highest stan-
dard deviation and three with the lowest standard deviation
in mean trust. The difference in paths reveals a divergence in
trust when participants experience the low-reliability
condition.

In Table 2, four linear mixed-effects models were built.
Models were evaluated using the root mean square error
(RMSE), Akaike information criterion (AIC), Bayesian infor-
mation criterion (BIC), and conditional R? value. RMSE
reflects the difference between predicted and actual values.
AIC and BIC reflect how well the model fits the data with a
term that penalizes model complexity. The lower these three
metrics, the better the model performance. The conditional
R? is the proportion of total variance explained by the model.
The higher the R?, the better the model performance.

Model 0 (Reliability | ID) uses ID as the random intercept
serving as a baseline model which accounts for the overall
trust level due to general individual differences.

Model 1 corresponds to the first hypothesis and tests the
effects of specific individual differences on trust in automa-
tion, which were measured using automation-induced com-
placency and propensity to trust scales. The individual
measures only slightly improved the marginal R* value. The
effect of complacency and propensity are both statistically
non-significant (p = 0.61, p = 0.38).

Model 2 corresponds to the second hypothesis and tests
the effects of automation characteristics on trust. We used
automation reliability and the number of cycles as exposure
to automation. We added reliability and exposure as fixed
effects to determine if the model performance would be
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improved. The effect of reliability [low] is statistically sig-
nificant and negative, f = -1.40, 95% CI [-1.62, -1.19],
#(210) = -12.82, p <.001; Std. B = -1.07, 95% CI [-1.38,
-0.75], whereas the effect of exposure is non-significant,
#210) = -0.69, p = 0.49.

Model 3 corresponds to the third hypothesis and tests
the effect of trust dynamics by adding the interaction
between reliability and exposure along with the individual
by-reliability variability. By adding the individual by-reli-
ability variability, model 3 shows diverging effects in
Figure 1 and would serve as the baseline model. The total
explanatory power of this model is substantial with a high
conditional R? value (0.84) and the part related to the
fixed effects alone. Additionally, the AIC and BIC are the
lowest for model 4, which indicates that the trust dynamic
model explains the greatest amount of trust variation
using the fewest possible parameters. Within this model,
the effect of low reliability is statistically significant and
negative, B = -1.10, 95% CI [-1.51, -0.69], #(207) =
-5.24, p <.001; Std. B = -0.84, 95% CI [-1.16, -0.53].

mean trust value

2

Startup Venting Shutdown Startup _Venting Shutdown Startup Venting Shutdown Startup Venting Shutdown
1 2 1 2

interaction(event, exposure, reliability)

Figure |. Trust diverges when people experience low-reliability
automation.

The effect of exposure is statistically significant and posi-
tive, B = 0.24, 95% CI [0.05, 0.44], #(207) = 2.43, p
=.02; Std. B = 0.19, 95% CI [0.04 0.34]. The interaction
effect of the exposure and reliability is statistically sig-
nificant and negative, ,B = -0.80, 95% CI [-1.14, -0.47],
1207) = -4.70, p <.001; Std. B = -0.62, 95% CI [-0.88,
-0.36]. Trust in the high-reliability condition is an esti-
mated 4.89 on a Likert scale of 7. The trust score is 1.10
points lower in the low condition, 0.24 points higher in the
second exposure, and 0.81 points lower if there is an interac-
tion between the low condition with the second exposure.
For the random effects, the standard deviation for by-subject
random intercepts indicates that trust levels for subjects var-
ied around the average intercept of 0.69 points by about 0.77
points. Additionally, we used Best Linear Unbiased
Predictions (BLUPs) to predict random effects and found no
correlations with the automation complacency (R*> < 0.01)
and propensity to trust (R*> = 0.03). These results again vali-
date that individual differences do not account for trust
divergence and supports the trust dynamics hypothesis.

Discussion

We observed that trust diverges when people experienced
automation error: some people maintained a steady level of
trust whereas others showed a drastic decline in trust. To
explain this trust divergence, we evaluated three hypothe-
ses—individual differences, automation characteristics, and
trust dynamics—using linear mixed effects models. We found
that the trust dynamics model, which uses automation expo-
sure and reliability as an interaction fixed effect, with indi-
vidual differences and participants as a random intercept and
slope, yielded the highest R? and lowest AIC and BIC val-
ues. Results suggest that the trust dynamics model best
explained the trust divergence. Because trust dynamics con-
sider individual differences and how people’s trust is rein-
forced by the automation characteristics and multiple
exposures over time. Our results reinforce the notion that
individual differences alone are insufficient to explain trust
divergence. Instead, the concept of bifurcation in a dynamic
system may provide a better explanation. This concept

Table 2. Performance metrics comparison between regression models.

# Model Formula RMSE AIC BIC R* (cond.)

0 Baseline model trust ~ 1| ID 0.97 671.38 681.49 0.40

I Individual differences trust ~ complacency + propensity + (1| ID) 1.03 613.94 630.15 0.41

2 Automation reliability trust ~ reliability -+ exposure + (I | ID) 0.70 55531 572.16 0.68
and exposure

3 Trust Dynamics 0.48 481.13 508.09 0.84

* exposure + ( reliability|ID)

trust ~ reliability + exposure + reliability
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describes how even slight changes in a system can lead to
qualitatively different behavior, which might correspond to
certain individuals maintaining stable trust in automation
while others experience sudden shifts in trust.

Whether trust diverge reflects enduring traits or states that
emerge from automation interaction has major system design
implications. These mechanisms parallel those associated
with the concept of “accident proneness.” Prior studies found
that individuals who have experienced incidents of accidents
in the past are more likely to experience them in the future
than are individuals who have not experienced an accident
(Bates & Neyman, 1952). Heckman argued that this condi-
tional probability of accident proneness is based on struc-
tural relationships of state dependence, rather than
heterogeneity in population and individual differences
(Heckman, 1981). Enduring individual differences or traits
suggest an emphasis on selection in system design, whereas
state dependence would emphasize interaction design.

Interaction design from the trust dynamic perspective
suggests that systems should measure and manage trust
across human-automation interactions. Rather than focusing
only on generic trust calibration through more transparent
designs, a dynamic perspective suggests a focus on “respon-
sitivity”’, where the automation detects and responds to
changes in trust (Chiou & Lee, 2021). The importance of a
dynamic perspective is even more important in hybrid teams
with more than one human operator interacting with the
automation. In these teams of over- and under-trust can cir-
culate as a contagion within the network. Trust circulates
through the network via explicit communication or implicit
observations of others’ interactions and norms (Stewart,
2003). Drawing inspiration from the widely used Susceptible-
Infectious-Recovered (SIR) dynamic system model in epide-
miology, researchers can explore the influence of network
dynamics on trust bifurcation (Nakahara & Doya, 1998).
Gorman and colleagues have previously conceptualized
teams as dynamic systems, revealing the importance of con-
cepts like attractors and synchronization (Gorman et al.,
2017). Future research can understand and model trust
dynamics in a hybrid team, identifying the roles and impacts
of attractors, perturbation, and synchronization.

Our findings on trust dynamics conforms with the state
dependence theory (Heckman, 1981). When designing the
system, it is crucial adopt a state-dependent and dynamic
perspective to evaluate human performances and trust. Early-
stage measurement of trust and identification of distinct pop-
ulations experiencing divergent trust patterns can inform the
development of personalized systems to manage trust more
effectively.

Conclusion

Even when people experience the same automation, their
trust in automation can diverge over time. Prior research has
typically focused on individual differences to explain trust

divergence. However, we showed that trust divergence was
best modeled by trust dynamic perspective, which considers
the interaction between reliability and exposure along with
the individual by reliability variability ( RZ= 0.84). Our
results suggest the concept of bifurcation in dynamic sys-
tems, which describes how small changes in a system lead to
sudden shifts in behavior, might explain trust divergence.
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