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Introduction

As intelligent agents become increasingly autonomous on 
progressively more complex tasks, trust becomes more 
essential to designing effective human-automation coopera-
tion (Chiou & Lee, 2021). Trust, defined as “the attitude that 
an agent will help achieve an individual’s goals in a situation 
characterized by uncertainty and vulnerability” (Lee & See, 
2004, p. 54), is crucial for ensuring appropriate reliance on 
automation and avoiding its misuse, disuse, or abuse 
(Parasuraman, 1997). Often, people’s trust in automation 
often evolves and converges to a relatively homogeneous 
level of trust. However, trust can also diverge. Interacting 
with the same automation, some people might develop high 
levels of trust whereas others might grow to distrust it 
(Kamaraj et al., 2023; Liu et al., 2021). This divergent trust 
is an interesting form of trust miscalibration because it 
describes how some people might over-trust and others 
might under-trust the same automation.

It might be useful to consider trust divergence as qualita-
tive changes or ‘bifurcation’ in how people experience and 
trust automation. Bifurcation, well-studied in dynamical sys-
tems, describes how a small initial change of a system made 
to the parameter values, known as bifurcation parameters, 
can cause a sudden topological change in its behavior. In the 
context of trust in automation, this small initial change is 
often considered as differences in initial trust and individual 

differences, as well as variance in their initial perception and 
interaction with the automation. The bifurcation parameter 
refers to the changes in automation characteristics, such as 
an error. Previous research has highlighted various reactions 
following automation failures, including disbelievers, 
Bayesian decision-makers, and oscillators (Bhat et al., 2022). 
While researchers often rely on individual differences to 
explain diverse group behaviors. Yet, focusing solely on 
individual behaviors neglects the temporal aspect of how ini-
tial individual differences compound with the subsequent 
experiences of automation characteristics, especially when 
encountering the ‘bifurcation parameter’ (e.g., automation 
errors). The underlying mechanism contributing to the stabi-
lized and diverging trust has received little attention and 
merits investigation. Three factors, namely individual differ-
ences, automation characteristics, and trust dynamics, may 
account for the trust bifurcation. In this paper, we argue that 
adopting the concept of bifurcation as an outcome of a 
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dynamic system offers a more suitable framework for 
explaining trust divergence.

Individual Differences

The wide range of individual differences, encompassing 
backgrounds, personalities, and knowledge of automation, 
contributes to the variability in individuals' propensity to trust 
automation. Those with a higher inclination to trust may 
experience a greater decline in trust when interacting with 
low-performing automation (Merritt & Ilgen, 2008). 
Moreover, individuals who with a stronger "perfect automa-
tion schema" demonstrated greater declines in trust when 
they encountered automation errors (Dzindolet et al., 2002). 
Additionally, individuals also vary in automation-induced 
complacency, which can manifest as either a failure to detect 
or an delayed response to detecting errors (Bailey & Scerbo, 
2007; Merritt et al., 2019). Prior research has found that com-
placency interacts with automation characteristics: the higher 
the system reliability, the more likely the operators become 
complacent (Parasuraman et al., 1993). Minor differences in 
individuals can influence the initial level of trust and subse-
quently shape the interpretation of new information. Thus, 
individual differences can influence trust divergence.

Hypothesis 1: Individual differences predict diverging of 
trust in automation.

Automation Reliability and Exposure

Because trust calibration is the correspondence between a 
person’s trust in automation and the automation’s capabili-
ties, it has been consistently shown that automation capabil-
ity significantly influences trust in automation (Dzindolet 
et al., 2002). Automation failures often have a much stronger 
influence on trust than automation successes: trust is difficult 
to build but can be lost quickly (Dzindolet et  al., 2003; 
Manzey et al., 2012). Trust is continuous process influenced 
by the trust of a previous moment (Yang et  al., 2023). 
Exposure to automation reflects the extent to which individ-
uals have encountered and interacted with automated sys-
tems. Repeated exposures can have both positive and 
negative effects on individuals’ behaviors and trust in auto-
mation. On one hand, repeated exposure can increase famil-
iarity, indirectly influencing trust (Mayer et  al., 1995). On 
the other hand, repeated exposures, especially with highly 
reliable automation, can induce complacency and decreased 
situational awareness, resulting in over-reliance on automa-
tion and over-react to automation errors (Dzindolet et  al., 
2002). Thus, the automation capability and exposure to auto-
mation can be potential causes of the diverging levels of trust 
and motivate the second hypothesis.

Hypothesis 2: Automation reliability and exposure predict 
diverging of trust in automation.

Trust Dynamics

Trust is inherently dynamic. People calibrate their trust over 
time as a continuous cognitive process (Gao & Lee, 2006). 
While researchers have highlighted the continuous and tem-
poral elements of trust dynamics (Yang et al., 2023), limited 
past research has used trust dynamics to explain people’s 
divergent opinions on automation. Using trust dynamics, 
trust divergence can be modeled as a bifurcation in a dynamic 
system: a small change in the initial state gradually influ-
ences behavioral framing and subsequent decision-making 
processes. This bifurcation results in trust stabilizing as two 
distinct trajectories. For example, in supervisory control, the 
individual differences shape the decision between manual 
control and automation. Once either decision is selected, it 
would provide positive or negative experiences. The experi-
ences create inertia to keep people only focusing on either 
the advantages or disadvantages. Automation failures can be 
bifurcation transient point, which leads to trust divergence 
and long-term maintenance in certain states. Thus, the struc-
tural changes of the bifurcation depend on the combination 
of individual differences, the automation performance and 
the exposure, and their interaction over time, rather than on 
any individual factor alone.

Hypothesis 3: Trust is a dynamic system. People’s varying 
responses to the interaction of automation characteristics 
and exposure predict diverging of trust in automation.

Method

The study was a 2 (reliability) × 2 (cycles) × 3 (events) 
within-subject study. Participants performed 12 decision-
making tasks associated with managing a system of a simu-
lated space station: the Habitat’s Carbon Dioxide Removal 
System (CDRS). Participants were assisted by a conversa-
tional agent (Bucky) with 2 levels of reliability (i.e., high, 
and low). Each level of reliability had 2 repeated cycles of 
the CDRS tasks, each including 3 events (i.e., startup, vent-
ing, shutdown). Details of the study were documented in (Li 
et al., 2022).

Participants

A total of 24 participants (18 female, 6 male) were recruited 
(M = 23.7, SD = 3.6). Recruitment inclusion criteria 
included that participants should be comfortable using a 
computer and a touch screen interface as well as have some 
technical background (e.g., completion of engineering or sci-
ence courses). Due to the safety concerns of COVID-19, the 
study took place online. It was a two-session, two-day study 
with each session lasting up to two hours. In total, the study 
lasted approximately four hours for each participant. 
Participants received $30 per hour for up to $120 for four 
hours of participation.
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Procedures

After signing the consent form, participants completed a 
two-part training: the first provided a study overview and 
training on the CDRS system, while the second included an 
interactive demonstration of working with Bucky on deci-
sion-making in PRIDE. During the study, participants had 25 
minutes to use the CDRS system to remove CO2 from 
Habitat’s environment by running the CDRS through three 
events (startup, venting, and shutdown) before their crew 
experienced CO2 poisoning. For each event, the participant 
made two essential decisions with Bucky’s aid. The first 
was selecting a procedure to run to remove the CO2. Bucky 
recommended a procedure. The participant could either 
accept Bucky’s recommendation or reject it and choose a 
different procedure. The second decision was deciding 
whether to rerun the procedure selected. As part of this 
decision participants would be advised by Bucky if the state 
of the CDRS was incorrect and if a different procedure 
should be run. The participants could either accept Bucky’s 
recommendation or reject Bucky’s recommendation and 
run a different procedure. The participants made their deci-
sions either based on their knowledge from their training 
session or by relying on Bucky’s recommendation. Once 
the procedure was selected, PRIDE automated the proce-
dure execution. If the participant selected the incorrect pro-
cedure, an error occurred. The participant then had to 
manually stop the procedure and reselect a procedure. The 
participant finished the event by confirming the procedure 
ran correctly and completed the trust ratings.

Data Analysis

Linear mixed effect models identified features predicting 
trust as measured by the 12-item, 7-point Likert scale (Jian 
et  al., 2000). To test our hypotheses regarding how indi-
vidual differences, automation characteristics, and dynam-
ics explain trust, we gather relevant features for each 
hypothesis.

For individual differences, we measured people’s automa-
tion complacency and propensity to trust. We adopted the 
Automation-Induced Complacency Potential-Revised scale 
(AICP-R) (Merritt et  al., 2019), which is a 10-item with 
response options on a five-point Likert scale ranging from 1 
(strongly agree) to 5 (strongly disagree). Example items 
include, “Constantly monitoring an automation is a waste of 
time.” For propensity to trust, we measured people’s general 
tendency to trust automation using the Propensity to Trust 
Machines questionnaire (Merritt, 2011). This scale consists 
of six items with response options ranging from 1 (strongly 
disagree) to 5 (strongly agree). Example items include, “I 
usually trust machines until there is a reason not to.”

Automation characteristics were modeled as reliability con-
dition and exposure. Reliability is a binary indicator of agent 
performance. Exposure is defined as the number of times 

participants experience the same automation characteristics, 
which is the number of cycles participants experienced.

For the trust dynamics hypothesis, we considered the 
interaction of automation characteristic and exposure along 
with individuals’ varying responses to the experiences.

Results

The mean trust score for the high-reliability condition was 
5.78 (SD = 0.86) whereas, for the low condition, the mean 
trust score was 4.37 (SD = 1.44). The difference in mean 
trust values across reliability and exposure were shown in 
Table 1. From Figure 1 we observed that the path taken by 
individuals throughout the experiment was highly variable: 
some maintained a steady level of trust throughout the exper-
iment, while others had dramatic drops in trust. The black 
lines represent six participants: three with the highest stan-
dard deviation and three with the lowest standard deviation 
in mean trust. The difference in paths reveals a divergence in 
trust when participants experience the low-reliability 
condition.

In Table 2, four linear mixed-effects models were built. 
Models were evaluated using the root mean square error 
(RMSE), Akaike information criterion (AIC), Bayesian infor-
mation criterion (BIC), and conditional R2  value. RMSE 
reflects the difference between predicted and actual values. 
AIC and BIC reflect how well the model fits the data with a 
term that penalizes model complexity. The lower these three 
metrics, the better the model performance. The conditional 
R2 is the proportion of total variance explained by the model. 
The higher the R2 , the better the model performance.

Model 0 (Reliability | ID) uses ID as the random intercept 
serving as a baseline model which accounts for the overall 
trust level due to general individual differences.

Model 1 corresponds to the first hypothesis and tests the 
effects of specific individual differences on trust in automa-
tion, which were measured using automation-induced com-
placency and propensity to trust scales. The individual 
measures only slightly improved the marginal R2  value. The 
effect of complacency and propensity are both statistically 
non-significant (p = 0.61, p = 0.38).

Model 2 corresponds to the second hypothesis and tests 
the effects of automation characteristics on trust. We used 
automation reliability and the number of cycles as exposure 
to automation. We added reliability and exposure as fixed 
effects to determine if the model performance would be 

Table 1.  Mean Trust Values between Reliability and Exposure.

Reliability Exposure M(SD) CI

High 1 5.52 (.19) [5.14, 5.90]
  2 5.77 (.18) [5.39, 6.14]
Low 1 4.42 (.25) [3.90, 4.94]
  2 3.86 (.27) [3.31, 4.41]
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improved. The effect of reliability [low] is statistically sig-
nificant and negative, β  = -1.40, 95% CI [-1.62, -1.19], 
t(210) = -12.82, p <.001; Std. β  = -1.07, 95% CI [-1.38, 
-0.75], whereas the effect of exposure is non-significant, 
t(210) = -0.69, p = 0.49.

Model 3 corresponds to the third hypothesis and tests 
the effect of trust dynamics by adding the interaction 
between reliability and exposure along with the individual 
by-reliability variability. By adding the individual by-reli-
ability variability, model 3 shows diverging effects in 
Figure 1 and would serve as the baseline model. The total 
explanatory power of this model is substantial with a high 
conditional R2  value (0.84) and the part related to the 
fixed effects alone. Additionally, the AIC and BIC are the 
lowest for model 4, which indicates that the trust dynamic 
model explains the greatest amount of trust variation 
using the fewest possible parameters. Within this model, 
the effect of low reliability is statistically significant and 
negative, β  = -1.10, 95% CI [-1.51, -0.69], t(207) = 
-5.24, p <.001; Std. β  = -0.84, 95% CI [-1.16, -0.53]. 

The effect of exposure is statistically significant and posi-
tive, β  = 0.24, 95% CI [0.05, 0.44], t(207) = 2.43, p 
=.02; Std. β  = 0.19, 95% CI [0.04 0.34]. The interaction 
effect of the exposure and reliability is statistically sig-
nificant and negative, β  = -0.80, 95% CI [-1.14, -0.47], 
t(207) = -4.70, p <.001; Std. β  = -0.62, 95% CI [-0.88, 
-0.36]. Trust in the high-reliability condition is an esti-
mated 4.89 on a Likert scale of 7. The trust score is 1.10 
points lower in the low condition, 0.24 points higher in the 
second exposure, and 0.81 points lower if there is an interac-
tion between the low condition with the second exposure. 
For the random effects, the standard deviation for by-subject 
random intercepts indicates that trust levels for subjects var-
ied around the average intercept of 0.69 points by about 0.77 
points. Additionally, we used Best Linear Unbiased 
Predictions (BLUPs) to predict random effects and found no 
correlations with the automation complacency (R2 < 0.01) 
and propensity to trust (R2 = 0.03). These results again vali-
date that individual differences do not account for trust 
divergence and supports the trust dynamics hypothesis.

Discussion

We observed that trust diverges when people experienced 
automation error: some people maintained a steady level of 
trust whereas others showed a drastic decline in trust. To 
explain this trust divergence, we evaluated three hypothe-
ses—individual differences, automation characteristics, and 
trust dynamics–using linear mixed effects models. We found 
that the trust dynamics model, which uses automation expo-
sure and reliability as an interaction fixed effect, with indi-
vidual differences and participants as a random intercept and 
slope, yielded the highest R2  and lowest AIC and BIC val-
ues. Results suggest that the trust dynamics model best 
explained the trust divergence. Because trust dynamics con-
sider individual differences and how people’s trust is rein-
forced by the automation characteristics and multiple 
exposures over time. Our results reinforce the notion that 
individual differences alone are insufficient to explain trust 
divergence. Instead, the concept of bifurcation in a dynamic 
system may provide a better explanation. This concept 

Figure 1.  Trust diverges when people experience low-reliability 
automation.

Table 2.  Performance metrics comparison between regression models.

# Model Formula RMSE AIC BIC R2  (cond.)

0 Baseline model trust ID~ |1 0.97 671.38 681.49 0.40

1 Individual differences trust complacency propensity ID~ ( | )+ + 1 1.03 613.94 630.15 0.41

2 Automation reliability 
and exposure

trust reliability exposure ID~ ( | )+ + 1 0.70 555.31 572.16 0.68

3 Trust Dynamics trust reliability exposure reliability

exposure reliabilit

~

*

+ +

+ yy ID|( )
0.48 481.13 508.09 0.84
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describes how even slight changes in a system can lead to 
qualitatively different behavior, which might correspond to 
certain individuals maintaining stable trust in automation 
while others experience sudden shifts in trust.

Whether trust diverge reflects enduring traits or states that 
emerge from automation interaction has major system design 
implications. These mechanisms parallel those associated 
with the concept of “accident proneness.” Prior studies found 
that individuals who have experienced incidents of accidents 
in the past are more likely to experience them in the future 
than are individuals who have not experienced an accident 
(Bates & Neyman, 1952). Heckman argued that this condi-
tional probability of accident proneness is based on struc-
tural relationships of state dependence, rather than 
heterogeneity in population and individual differences 
(Heckman, 1981). Enduring individual differences or traits 
suggest an emphasis on selection in system design, whereas 
state dependence would emphasize interaction design.

Interaction design from the trust dynamic perspective 
suggests that systems should measure and manage trust 
across human-automation interactions. Rather than focusing 
only on generic trust calibration through more transparent 
designs, a dynamic perspective suggests a focus on “respon-
sitivity”, where the automation detects and responds to 
changes in trust (Chiou & Lee, 2021). The importance of a 
dynamic perspective is even more important in hybrid teams 
with more than one human operator interacting with the 
automation. In these teams of over- and under-trust can cir-
culate as a contagion within the network. Trust circulates 
through the network via explicit communication or implicit 
observations of others’ interactions and norms (Stewart, 
2003). Drawing inspiration from the widely used Susceptible-
Infectious-Recovered (SIR) dynamic system model in epide-
miology, researchers can explore the influence of network 
dynamics on trust bifurcation (Nakahara & Doya, 1998). 
Gorman and colleagues have previously conceptualized 
teams as dynamic systems, revealing the importance of con-
cepts like attractors and synchronization (Gorman et  al., 
2017). Future research can understand and model trust 
dynamics in a hybrid team, identifying the roles and impacts 
of attractors, perturbation, and synchronization.

Our findings on trust dynamics conforms with the state 
dependence theory (Heckman, 1981). When designing the 
system, it is crucial adopt a state-dependent and dynamic 
perspective to evaluate human performances and trust. Early-
stage measurement of trust and identification of distinct pop-
ulations experiencing divergent trust patterns can inform the 
development of personalized systems to manage trust more 
effectively.

Conclusion

Even when people experience the same automation, their 
trust in automation can diverge over time. Prior research has 
typically focused on individual differences to explain trust 

divergence. However, we showed that trust divergence was 
best modeled by trust dynamic perspective, which considers 
the interaction between reliability and exposure along with 
the individual by reliability variability ( R2 = 0.84). Our 
results suggest the concept of bifurcation in dynamic sys-
tems, which describes how small changes in a system lead to 
sudden shifts in behavior, might explain trust divergence.
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