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Abstract

As human-Al collaboration becomes more common, robust metrics for evaluating team performance are essential. This
study examines whether physiological synchrony can predict team effectiveness using machine learning (ML) models. Dyads
completed a mission-planning task while multimodal physiological data (e.g., HRV, respiration, fNIRS) and communication
were collected. We extracted both individual and interactional-level features (e.g., synchrony, coherence) and trained ML
models to classify team performance. Logistic Regression and SVM models achieved up to 96% accuracy when including
interactional synchrony features, outperforming models using individual data alone. Key predictors included breathing
synchrony and oxygenated hemoglobin coherence. These findings demonstrate the added value of modeling physiological
coupling to understand emergent team dynamics. Future work will expand the sample size and incorporate team-level
recurrence and entropy metrics to better capture collective coordination. This approach offers a pathway toward real-time
performance monitoring and adaptive interventions in high-stakes collaborative environments.
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Introduction complementary value in predicting team performance and
advancing ML-based approaches for human and hybrid

Teams play a critical role in diverse domains, including mili- human-Al teams

tary decision-making, aviation crew coordination, and medi-
cal care. As artificial intelligence (Al) advances in autonomy,
it is increasingly positioned as a potential teammate, highlight- Background
ing the importance of effective human-autonomy teaming. To
analyze and enhance team performance, robust measurement
methods are essential. Machine learning (ML) offers a promis-
ing approach by leveraging bio-physiological sensor data to
predict team performance. Despite the recognition of team

Team performance is inherently interdependent, shaped not
only by individual capabilities but also by interactional
and emergent team-level processes. Traditional ML-based
approaches to team performance modeling primarily focus
on individual physiological and behavioral data, such as

cognition as an emergent process (Cool.<e e.t ?l" 2013), existing EEG, heart rate variability (HRV), and eye tracking. While
measurement ms.ethods rfaly hanlly on individual-level assess- these measures are useful for assessing cognitive workload
ments, overlooking the interactional and team-level dynamics

that shape performance. This paper identifies three critical lev-
Is of data for feat ngineering in ML models: individual-
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and stress at the individual level, they fail to capture the
coordinated physiological responses that defines effective
teamwork (Brannick & Prince, 1997). A critical limitation in
existing approaches is the lack of interdependent data model-
ing, which fails to account for how team members synchro-
nize in response to shared tasks and stressors (Brannick &
Prince, 1997). This limitation arises because team cognition
is not merely an aggregation of individual states but emerges
from interaction patterns (Cooke et al., 2013). To address
this, we explore multi-level feature modeling. Research has
demonstrated that synchrony in physiological signals, such
as respiration and cardiac activity, is associated with
improved communication, shared situational awareness, and
higher collective performance (Gorman et al., 2012; Liu
etal., 2021). To bridge this gap, it is essential to consider data
at the individual, interactional, and team levels when apply-
ing ML techniques to understand and measure team perfor-
mance. At the individual level, team activation is inferred by
aggregating individual neuro-physiological and behavioral
data (Kivikangas et al., 2014). At the interaction level, fea-
tures such as similarity, mimicry, and synchrony serve as
strong predictors of social dynamics and performance
(Gonzales et al., 2010; Valdesolo & DeSteno, 2011). For
instance, Paromita et al. (2023) used conversational turn
similarity to predict micro-behaviors, while Kusmakar et al.
(2020) developed a model of player interaction networks to
predict scoring opportunities. Liu et al. (2021) introduced a
multi-brain network model to link neural synchrony with
team collaboration. At the team level, dynamic patterns over
time, such as recurrence rate and entropy, have been ana-
lyzed using methods like recurrence analysis (Knight et al.,
2021). For example, Gorman et al. (2012) modeled team
communication dynamics, while Strang et al. (2014) used
physio-behavioral data to assess coupling during collective
tasks. By systematically evaluating the contribution of these
multi-level features to ML-based team performance predic-
tion, we aim to demonstrate the added value of physiological
synchrony metrics and provide empirical support for ITC
and emergent team cognition theories.

Method

We adapted the Noncombatant Evacuation Operation (NEO)
task, a team-based collaboration exercise originally developed
by the U.S. Navy, for two participants. In this task, dyads col-
laboratively planned a rescue mission under constrained
resources, including weapons, personnel, and time. Each par-
ticipant had unique mission-critical knowledge: one handled
weapons and personnel, while the other focused on environ-
mental and intelligence data. Verbal communication was nec-
essary for coordination. To examine team reorganization, we
introduced two perturbations: (1) an assembly task requiring
participants to build a Lego set and (2) a sudden reduction
in the mission deadline. Teams developed an action plan

covering routing, extraction strategies, injury management,
and safe return logistics, which was subsequently evaluated on
a 100-point performance scale. Throughout the task, multi-
modal physiological and behavioral data were collected,
including fNIRS, EEG, ECG, PPG, respiration, alongside
communication logs. Preliminary data from two teams (of a
planned sample of 35 team samples) are presented here. Full
analysis of 35 teams will be presented at the conference.

Physiological data were first preprocessed using filtering
and normalization techniques to reduce noise and ensure
comparability across subjects. Given the preliminary nature
of this study and the small dataset, we focused on individual
(e.g., HRV time-domain and frequency-domain metrics;
n=28) and interaction-level features (e.g., breathing syn-
chrony, RSP coupling, and PPG phase coherence; n=15),
excluding team-level dynamics such as recurrence and
entropy, which require larger samples to capture robust pat-
terns. Features were derived using a sliding window approach
to balance temporal resolution with signal stability: long
windows (5 min) were used for HRV to capture meaningful
variability in autonomic nervous system activity, as HRV
metrics require several minutes of continuous data to be sta-
tistically reliable. In contrast, short windows (5s) were
applied to other signals to detect finer-grained interactional
dynamics. Features with zero variance, excessive missing
values, or high correlation (»>.7) were removed to reduce
redundancy, reducing the set from 43 to 22. See Appendix
Table A1 for a complete list of selected features.

Team performance was scored on a 100-point rubric by
trained raters based on mission completeness, coordination
efficiency, and decision rationale. We used a median split
(mean score=67.5) to label teams as high (above mean) or
low (below mean) performers. Four machine learning mod-
els—K-Nearest Neighbors (KNN), Multi-Layer Perceptron
(MLP), Logistic Regression, and Support Vector Machine
(SVM)—were trained and evaluated using two feature sets:
(1) Individual-level features and (2) Combined individual
and interactional features. Due to the small sample size and
temporal nature of physiological data, we employed a strati-
fied temporal 80 to 20 train-test split. We first identify all
temporal indices for each class separately, creating class-
specific ordered sequences. Each class undergoes temporal
splitting using the same test ratio, ensuring balanced repre-
sentation across partitions. In the full dataset, we plan to
implement leave-one-team-out cross-validation (LOTO-CV)
to robustly assess model performance across diverse team
compositions and task responses. Additionally, grid search
was used for hyperparameter tuning, and regularization tech-
niques were applied. Model performance was assessed using
accuracy, precision, recall, and F1-score. For interpretability,
Logistic Regression’s feature coefficients were analyzed to
identify the most influential predictors of team performance.
Interactional features, such as team breathing synchrony and
O2HB sync index, emerged as key contributors.
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Table I. Classification Results Across Individual and Combined
Feature Sets.

Level of Feature Accuracy Precision Recall Fl
Individual
KNN 0.79 0.82 0.80 0.79
MLP 0.79 0.81 0.79 0.79
Logistic 0.86 0.88 0.87 0.86
SVM 0.87 0.89 0.87 0.86
Individual + Interactional
KNN 0.66 0.67 0.66 0.65
MLP 0.74 0.74 0.74 0.74
Logistic 0.96 0.96 0.96 0.96
SVM 0.95 0.96 0.95 0.95
Outcome

As shown in Table 1, models trained on individual-level
physiological features demonstrated strong performance,
with Logistic Regression (Accuracy=0.86, F1-score=0.86)
and SVM (Accuracy=0.87, Fl-score=0.86) outperforming
KNN and MLP, both of which achieved approximately 79%
accuracy and F1-scores. Incorporating interactional features
(e.g., team breathing synchrony, physiological coupling, and
cross-correlations) led to substantial performance gains in
Logistic Regression and SVM, achieving 96% and 95%
accuracy, respectively, a 10-percentage point improvement
over models using individual features alone. Notably,
Logistic Regression demonstrated the most pronounced
improvement, reaching near-perfect classification perfor-
mance across all metrics (Precision, Recall, F1-score=0.96).
Conversely, KNN performance deteriorated (Accuracy =0.66,
F1-score=0.65), suggesting sensitivity to the increased fea-
ture dimensionality. Logistic Regression’s feature impor-
tance analysis identified interactional synchrony metrics as
the strongest predictors of team performance. O2HB syn-
chrony and RSP phase coherence emerged as the top impor-
tant features, followed by team breathing synchrony and
coupling stability. These findings indicate that team-level
physiological synchronization serves as a more robust pre-
dictor of team performance than individual physiological
states alone (Figure 1).

Logistic Top 12 Feature

Figure |. Logistic regression results for top |12 features.
Interactional-level features are top important features.

Conclusion

Our findings suggest that although individual physiological
features alone can effectively predict team performance,
incorporating  interactional-level synchrony metrics
enhances predictive power, particularly for Logistic
Regression and SVM models. The strong performance of
interactional features aligns with prior research on physio-
logical coupling in team settings, indicating that synchrony
measures capture meaningful team dynamics that contrib-
ute to performance outcomes. While the current models
demonstrate high accuracy, the limited dataset poses a sig-
nificant risk of overfitting. Future work will validate these
findings using a larger sample (n=35) and explore model
robustness across different team compositions and tasks.
Additionally, we will integrate team-level features, such as
recurrence and entropy measures, to better capture emer-
gent team dynamics and refine performance predictions.
These higher-order patterns may provide deeper insights
into the collective coordination mechanisms that drive team
effectiveness. Overall, this study provides empirical evi-
dence supporting the integration of physiological interac-
tional features for team performance prediction, with
implications for real-time monitoring and adaptive inter-
ventions in collaborative settings.
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