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Introduction

Effective teamwork is vital in high-stakes settings like military 
operations and emergency response. However, current assess-
ments often rely on post hoc, subjective evaluations that fail to 
capture the dynamic, time-varying nature of team cognition. 
The Biobehavioral Team Dynamics Measurement System 
(BioTDMS) addresses this gap by integrating multimodal phys-
iological and behavioral data with explainable machine learning 
models. Grounded in real-time team cognition (Gorman et al., 
2020), BioTDMS captures emergent and reorganizing team 
states, producing real-time, objective, and generalizable metrics 
for team adaptability and effectiveness (Figure 1). The system 
aims to identify, characterize, and validate bio-behavioral signa-
tures of team enaction, adaptation, and recovery (i.e., readiness 
and resilience), which are essential for optimizing team effec-
tiveness and operational decision-making in dynamic environ-
ments. The primary objectives of BioTDMS are: (1) Develop a 
multimodal sensing system that fuses neural (EEG, fNIRS), 
physiological (ECG, respiration, PPG), and behavioral (speech, 

gaze, input logs) signals; (2) Apply layered dynamics modeling 
to derive adaptive bio-behavioral signatures across individuals 
and teams; and (3) Validate the predictive performance of 
machine learning classifiers using synchronized sensor data and 
ground-truth task scores.

Background

Team dynamics present key challenges in linking individual 
bio-behavioral signals to team-level processes and outcomes. 
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Abstract
The Biobehavioral Team Dynamics Measurement System (BioTDMS) presents a novel, multimodal approach for assessing real-
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theory and layered dynamics modeling, the system captures reorganization and synchrony in team states in response to task 
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Evacuation Operation (NEO) planning task, BioTDMS identifies bio-behavioral signatures predictive of team effectiveness 
and stress resilience. Machine learning models, particularly logistic regression and support vector machines demonstrated 
high predictive performance (F1 ≈ 0.96) when leveraging team-level synchrony features, outperforming models trained 
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assessment and offer a pathway toward adaptive, data-driven training systems for mission-critical operations.
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Traditional models rely on aggregate, static snapshots of 
team cognition and/or subjective knowledge assessments, 
which fail to capture the nonstationary, time-varying nature 
of team interactions in dynamic environments (Gorman & 
Wiltshire, 2024). Also, many dynamic approaches to team 
assessment borrow theory from physical dynamical systems 
(e.g., synchronization, recurrence) that do not fully reflect 
the complexity of human interaction. Reliance on static 
physical models is problematic because team coordination is 
continuously reorganizing across multiple timescales and 
levels of analysis, necessitating a multiscale (individual and 
team), multimodal (bio and behavioral), moving window 
approach to capture dynamic patterns. BioTDMS builds on 
recent advances in interactive team cognition theory (Cooke 
et al., 2013) to enable real-time bio-behavioral monitoring, 
coupled with machine learning-based performance predic-
tion, to provide a generalizable, predictive framework for 
assessing team effectiveness.

BioTDMS integrates physiological and behavioral data to 
dynamically map team coordination and adaptability onto 
“ground-truth” performance metrics commonly used for mil-
itary training. This approach extends team cognition theory 
by incorporating traditional approaches (RF, SVM, MLP, 
KNN) and Multi-Task Multi-Kernel Learning (MTMKL) 
techniques developed for generalizable team cognition and 
performance assessment (Li et al., 2022). BioTDMS utilizes 
layered dynamics modeling (Gorman et al., 2019), allowing 
for real-time detection of bio-behavioral signatures that pre-
dict team adaptability, decision-making efficiency, and stress 

responses in teams (Gorman et al., 2016). BioTDMS seeks to 
enhance team training effectiveness and efficiency by com-
plementing subjective observations of trainers with objective 
metrics and allowing for a greater pace of training to support 
increased demands for warfighter readiness.

Approach

We recruited eight dyads (N = 16 participants), all with grad-
uate-level experience in human factors and cognitive sci-
ence, to perform a collaborative Noncombatant Evacuation 
Operation (NEO; Dunbar & Gorman, 2020; Warner et al., 
2003) planning task. Each dyad included an Environmental 
and a Weapons expert coordinating under time constraints. 
Data were collected over a 35-min session. To examine team 
reorganization, two perturbations were introduced (Figure 
2): (1) a distractor Lego task and (2) a shortened mission 
deadline. Participants were equipped with synchronized 
EEG, fNIRS, ECG, respiration, and eye-tracking sensors 
(Figure 3). Audio and keyboard/mouse activity were also 
logged.

The process begins with data fusion and signal process-
ing across multiple channels, including EEG, fNIRS, ECG, 
respiration, eye tracking, and communication. These sig-
nals are synchronized using a global reference timeline 
and preprocessed using filtering and normalization tech-
niques to minimize noise. Physiological data were down-
sampled to 1 Hz to expedite preprocessing and validate the 
feature set.

Figure 1.  BioTDMS overview.
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We used a layered dynamics model (Gorman et al., 2019) 
to generate dynamic reorganization curves of a team across 
physiological and speech communication sensor. A reorgani-
zation time series is computed as the moving window entropy 
(Shannon & Weaver, 1949) of the team state time series 
(ws = 8 s, #bins = quartiles) (Equation 1). In Equation 1, pn  is 

the relative frequency of each team communication, vehicle, 
or physiological state n ∈ N within a time window. The 
entropy metric was continuously recalculated using a mov-
ing-window approach. The informational value (, measured 
in bits, of an event is weighted by its probability of occur-
rence. Adaptation is defined as the peak of the reorganization 
curve extracted from the entropy time series during each per-
turbation (Stevens & Galloway, 2017). We calculated the 
95% confidence interval of the entropy to determine the peak 
component (Grimm et al., 2023).
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Then, to measure the amount of influence (degree to 
which subsets of sensors account for changing patterns at the 
team level) we calculated the average mutual information 
(AMI) between “lower level” (e.g., individual team member; 
bio-behavioral subsystem) and “higher level” (e.g., team; 
overall bio-behavioral states) states over time using a mov-
ing window of size ws (fs = 100 Hz, AMI bins = 10, Lead 
Lag = 0).

Figure 2.  Experimental process.

Figure 3.  Experiment set up.
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Reorganization is used to detect significant shifts in the 
organization of states across sensors over time, and influence 
measures the relative importance of different subsystems 
underlying reorganization. These data provide candidate  
signature packages that the ML agent uses to optimize 

performance prediction across both individual and 
interaction-level.

Initially, 43 features were extracted from multimodal 
physiological data, including individual-level and interac-
tional-level metrics. To ensure data quality and reduce 
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redundancy, we applied filtering and normalization, followed 
by feature reduction based on three criteria: zero variance, 
excessive missing values, and high correlation (r > .7). This 
process narrowed the feature set to 22 key features. Individual-
level features included heart rate variability (HRV) metrics, 
respiratory variability, and fNIRS-derived oxygenation 
trends, while interaction-level features captured team dynam-
ics such as breathing synchrony, photoplethysmogram (PPG) 
coherence, and oxygenated hemoglobin (O2HB) synchrony. 
These features were computed using a sliding window 
approach—5-min windows for HRV to ensure statistical reli-
ability, and 5-s windows for more dynamic signals. The 
refined feature set was then used to train and evaluate various 
models, including traditional approaches (RF, SVM, MLP, 
KNN) and methods like multi-kernel and multi-task learning. 
Due to the small sample size and temporal nature of physio-
logical data, we employed a stratified temporal 80 to 20 train-
test split.

Outcome

The communication reorganization calculated using the lay-
ered dynamics modeling framework across team members is 
shown in Figure 4. We successfully replicated adaptation 
peaks in the communication layer (highlighted in pink) 
across multiple scenarios. The distribution of influence 
(AMI) was calculated, and the results indicate that the physi-
ological influence distribution is sensitive to perturbations 

(Figure 5). This finding is important, because changing dis-
tributions of bio-behavioral influence can be used to charac-
terize validated signatures sent to the ML models for team 
performance prediction. We developed our ML pipeline and 
extracted features using a sliding window approach with two 
different time scales. Additionally, we computed both indi-
vidual and interaction-level features, focusing on correlation 
measures between subjects across physiological data. To 
improve computational efficiency and model performance, 
we conducted feature selection. The feature set was then 
used to train multiple classification models, including KNN, 
MLP, LR, and SVM. We selected LR for interpretability, 
SVM for handling non-linear patterns in high-dimensional 
data, MLP for modeling complex relationships, and KNN as 
a simple non-parametric baseline. When using only individ-
ual-level features, LR and SVM both achieved high perfor-
mance (F1 ≈ 0.86–0.87). Importantly, incorporating 
interaction-level features—such as O2Hb coherence and 
respiratory coupling—boosted the performance of LR and 
SVM to 96% and 95%, respectively. In contrast, the MLP 
showed only moderate improvement, while KNN’s perfor-
mance significantly declined, likely due to its sensitivity to 
high-dimensional feature sets and lack of internal regulariza-
tion. This range of models enabled us to validate the general-
izability of our findings across algorithmic approaches and 
confirm that team-level synchrony features consistently out-
performed individual-only metrics, particularly in interpre-
table and robust classifiers like LR and SVM.

Figure 4.  Communication reorganization.
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Conclusion

These findings validate that team-level features are critical 
for predicting emergent team performance. BioTDMS offers 
a robust framework for real-time, explainable team perfor-
mance assessment. Key innovations include multi-resolution 
metrics that reveal dynamic team reorganization; Influence 
metrics that identify which subsystems (individual vs. col-
lective) drive performance changes; and High-performing 
classifiers that highlight the predictive power of team inter-
actional features. Future work includes expanding sample 
size, validating models across diverse operational domains, 
and integrating findings into adaptive training interventions 
aimed at enhancing operational readiness.
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