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Abstract

The Biobehavioral Team Dynamics Measurement System (BioTDMS) presents a novel, multimodal approach for assessing real-
time team performance in high-stakes, dynamic environments. Addressing the limitations of post hoc, subjective evaluations,
BioTDMS integrates physiological (EEG, fNIRS, ECG, respiration), behavioral (gaze, speech, input logs), and communication
data to generate dynamic, objective metrics of team cognition and adaptability. Grounded in interactive team cognition
theory and layered dynamics modeling, the system captures reorganization and synchrony in team states in response to task
perturbations. Using data collected from eight dyadic teams (16 participants) performing a time-constrained Noncombatant
Evacuation Operation (NEO) planning task, BioTDMS identifies bio-behavioral signatures predictive of team effectiveness
and stress resilience. Machine learning models, particularly logistic regression and support vector machines demonstrated
high predictive performance (FI = 0.96) when leveraging team-level synchrony features, outperforming models trained
on individual-level data alone. These findings underscore the importance of interactional metrics in team performance
assessment and offer a pathway toward adaptive, data-driven training systems for mission-critical operations.
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Introduction gaze, input logs) signals; (2) Apply layered dynamics modeling
to derive adaptive bio-behavioral signatures across individuals
and teams; and (3) Validate the predictive performance of
machine learning classifiers using synchronized sensor data and
ground-truth task scores.

Effective teamwork is vital in high-stakes settings like military
operations and emergency response. However, current assess-
ments often rely on post hoc, subjective evaluations that fail to
capture the dynamic, time-varying nature of team cognition.
The Biobehavioral Team Dynamics Measurement System
(BioTDMS) addresses this gap by integrating multimodal phys- Background
iological and behavioral data with explainable machine learning
models. Grounded in real-time team cognition (Gorman et al.,
2020), BioTDMS captures emergent and reorganizing team
states, producing real-time, objective, and generalizable metrics
for team adaptability and effectiveness (Figure 1). The system 'Arizona State University, Polytechnic, Mesa, USA
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Team dynamics present key challenges in linking individual
bio-behavioral signals to team-level processes and outcomes.
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Figure |. BioTDMS overview.

Traditional models rely on aggregate, static snapshots of
team cognition and/or subjective knowledge assessments,
which fail to capture the nonstationary, time-varying nature
of team interactions in dynamic environments (Gorman &
Wiltshire, 2024). Also, many dynamic approaches to team
assessment borrow theory from physical dynamical systems
(e.g., synchronization, recurrence) that do not fully reflect
the complexity of human interaction. Reliance on static
physical models is problematic because team coordination is
continuously reorganizing across multiple timescales and
levels of analysis, necessitating a multiscale (individual and
team), multimodal (bio and behavioral), moving window
approach to capture dynamic patterns. BioTDMS builds on
recent advances in interactive team cognition theory (Cooke
et al., 2013) to enable real-time bio-behavioral monitoring,
coupled with machine learning-based performance predic-
tion, to provide a generalizable, predictive framework for
assessing team effectiveness.

BioTDMS integrates physiological and behavioral data to
dynamically map team coordination and adaptability onto
“ground-truth” performance metrics commonly used for mil-
itary training. This approach extends team cognition theory
by incorporating traditional approaches (RF, SVM, MLP,
KNN) and Multi-Task Multi-Kernel Learning (MTMKL)
techniques developed for generalizable team cognition and
performance assessment (Li et al., 2022). BioTDMS utilizes
layered dynamics modeling (Gorman et al., 2019), allowing
for real-time detection of bio-behavioral signatures that pre-
dict team adaptability, decision-making efficiency, and stress

responses in teams (Gorman et al., 2016). BioTDMS seeks to
enhance team training effectiveness and efficiency by com-
plementing subjective observations of trainers with objective
metrics and allowing for a greater pace of training to support
increased demands for warfighter readiness.

Approach

We recruited eight dyads (N=16 participants), all with grad-
uate-level experience in human factors and cognitive sci-
ence, to perform a collaborative Noncombatant Evacuation
Operation (NEO; Dunbar & Gorman, 2020; Warner et al.,
2003) planning task. Each dyad included an Environmental
and a Weapons expert coordinating under time constraints.
Data were collected over a 35-min session. To examine team
reorganization, two perturbations were introduced (Figure
2): (1) a distractor Lego task and (2) a shortened mission
deadline. Participants were equipped with synchronized
EEG, fNIRS, ECG, respiration, and eye-tracking sensors
(Figure 3). Audio and keyboard/mouse activity were also
logged.

The process begins with data fusion and signal process-
ing across multiple channels, including EEG, fNIRS, ECG,
respiration, eye tracking, and communication. These sig-
nals are synchronized using a global reference timeline
and preprocessed using filtering and normalization tech-
niques to minimize noise. Physiological data were down-
sampled to 1 Hz to expedite preprocessing and validate the
feature set.
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Figure 2. Experimental process.

Figure 3. Experiment set up.

We used a layered dynamics model (Gorman et al., 2019)
to generate dynamic reorganization curves of a team across
physiological and speech communication sensor. A reorgani-
zation time series is computed as the moving window entropy
(Shannon & Weaver, 1949) of the team state time series
(ws=38s, #bins=quartiles) (Equation 1). In Equation 1, p, is

AMI :ZPXY (x;,)log, {

XY,

Reorganization is used to detect significant shifts in the
organization of states across sensors over time, and influence
measures the relative importance of different subsystems
underlying reorganization. These data provide candidate
signature packages that the ML agent uses to optimize

Py (x;3;)
Px(xi)PY(yj)

the relative frequency of each team communication, vehicle,
or physiological state n € N within a time window. The
entropy metric was continuously recalculated using a mov-
ing-window approach. The informational value (, measured
in bits, of an event is weighted by its probability of occur-
rence. Adaptation is defined as the peak of the reorganization
curve extracted from the entropy time series during each per-
turbation (Stevens & Galloway, 2017). We calculated the
95% confidence interval of the entropy to determine the peak
component (Grimm et al., 2023).

sym

Entropy =— Z(pn xlog,p,) (1

n=1

Then, to measure the amount of influence (degree to
which subsets of sensors account for changing patterns at the
team level) we calculated the average mutual information
(AMI) between “lower level” (e.g., individual team member;
bio-behavioral subsystem) and “higher level” (e.g., team;
overall bio-behavioral states) states over time using a mov-
ing window of size ws (fs=100Hz, AMI bins=10, Lead
Lag=0).

}Inﬂ(X,Y) 2

performance prediction across both individual and
interaction-level.

Initially, 43 features were extracted from multimodal
physiological data, including individual-level and interac-

tional-level metrics. To ensure data quality and reduce
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Figure 4. Communication reorganization.

redundancy, we applied filtering and normalization, followed
by feature reduction based on three criteria: zero variance,
excessive missing values, and high correlation (> .7). This
process narrowed the feature set to 22 key features. Individual-
level features included heart rate variability (HRV) metrics,
respiratory variability, and fNIRS-derived oxygenation
trends, while interaction-level features captured team dynam-
ics such as breathing synchrony, photoplethysmogram (PPG)
coherence, and oxygenated hemoglobin (O,HB) synchrony.
These features were computed using a sliding window
approach—>5-min windows for HRV to ensure statistical reli-
ability, and 5-s windows for more dynamic signals. The
refined feature set was then used to train and evaluate various
models, including traditional approaches (RF, SVM, MLP,
KNN) and methods like multi-kernel and multi-task learning.
Due to the small sample size and temporal nature of physio-
logical data, we employed a stratified temporal 80 to 20 train-
test split.

Outcome

The communication reorganization calculated using the lay-
ered dynamics modeling framework across team members is
shown in Figure 4. We successfully replicated adaptation
peaks in the communication layer (highlighted in pink)
across multiple scenarios. The distribution of influence
(AMI) was calculated, and the results indicate that the physi-
ological influence distribution is sensitive to perturbations

(Figure 5). This finding is important, because changing dis-
tributions of bio-behavioral influence can be used to charac-
terize validated signatures sent to the ML models for team
performance prediction. We developed our ML pipeline and
extracted features using a sliding window approach with two
different time scales. Additionally, we computed both indi-
vidual and interaction-level features, focusing on correlation
measures between subjects across physiological data. To
improve computational efficiency and model performance,
we conducted feature selection. The feature set was then
used to train multiple classification models, including KNN,
MLP, LR, and SVM. We selected LR for interpretability,
SVM for handling non-linear patterns in high-dimensional
data, MLP for modeling complex relationships, and KNN as
a simple non-parametric baseline. When using only individ-
ual-level features, LR and SVM both achieved high perfor-
mance (F1 0.86-0.87). Importantly, incorporating
interaction-level features—such as O,Hb coherence and
respiratory coupling—boosted the performance of LR and
SVM to 96% and 95%, respectively. In contrast, the MLP
showed only moderate improvement, while KNN’s perfor-
mance significantly declined, likely due to its sensitivity to
high-dimensional feature sets and lack of internal regulariza-
tion. This range of models enabled us to validate the general-
izability of our findings across algorithmic approaches and
confirm that team-level synchrony features consistently out-
performed individual-only metrics, particularly in interpre-
table and robust classifiers like LR and SVM.
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Figure 5. Physiological reorganization.

Conclusion

These findings validate that team-level features are critical
for predicting emergent team performance. BioTDMS offers
a robust framework for real-time, explainable team perfor-
mance assessment. Key innovations include multi-resolution
metrics that reveal dynamic team reorganization; Influence
metrics that identify which subsystems (individual vs. col-
lective) drive performance changes; and High-performing
classifiers that highlight the predictive power of team inter-
actional features. Future work includes expanding sample
size, validating models across diverse operational domains,
and integrating findings into adaptive training interventions
aimed at enhancing operational readiness.
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